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WAVEFIELDS NEAR TRANSVERSE CUSP CAUSTICS PRODUCED BY

REFLECTING ULTRASONIC TRANSIENTS AND TONE BURSTS

FROM CURVED SURFACES

Abstract

by Carl King Frederickson, Ph. D.
Washington State University

August 1991

Chair: Philip L. Marston

Ultrasonic wavefields reflected from curved surfaces were studied in the vicinity of

caustics. Acoustical and optical transverse cusp diffraction catastrophes produced by

reflections from a curved metal surface in water were imaged by displaying the amplitude

or intensity in an observation plane transverse to the general direction of propagation. The

optical image was used to locate the cusp point in the observation plane. Acoustical

diffraction patterns for sine waves, described by the Pearcey function, were calculated with

the parameters determined by the experimental setup leaving no adjustable scaling

parameters. The calculated and experimental acoustical diffraction patterns showed good

agreement near the cusp point. The acoustical diffraction pattern showed the expected

mirror symmetry about an axis. The pattern was shown to scale properly with frequency.

The transverse cusp caustic separates space into a region with three rays and a

region with one ray. Inside the caustic there are three rays, on the curve two of the rays

merge and disappear leaving one ray outside. Transient signals reflected from curved

surfaces exhibited the merging and disappearance of rays on the caustic. Relative arrival

times for signals in calculated and recorded time traces agree well. The relation to the

wavefront parameters of the temporal orientation of the travel time surface is discussed.

The general shape of the travel time surface is that of the swallow tall caustic surface.

The temporal shape of the transient echoes was seen to be generally that of the

incident signal or of its Hilbert transform. The Hilbert transform shape identifies the

signals that have touched the caustic. The observed arrival sequence of the transient signals



was shh inside the caustic and one h outside, where s stands for a signal with the general

shape of the incident signal and h for its Hilbert transform. The relation between the

surface and wavefront parameters and the arrival sequence is given.
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CHAPTER ONE

INTRODUCTION AND OVERVIEW

This study is applicable to the simplest class of nontrivial three-dimensional caustic

surfaces produced by reflecting sound from curved surfaces. It is also relevant to the

understanding of the temporal and frequency dependence of wavefields where the strength

of the focusing is limited by the shape of the initial wavefront instead of its aperture or

spatial extent. This is commonly the situation in naturally produced caustics such as those

produced when light is refracted by a rippled surface 1. This dissertation describes

experiments conducted to study wavefields in the vicinity of a particular structurally stable

caustic: the transverse cusp caustic. The caustic was formed in an observation plane by

reflecting ultrasonic tone bursts and transients in water from a surface with the generic local

shape given by previous predictions 2 h(x,y) = hlx2 + h2xy 2 + h3y2 . Tone bursts were

used to approximate steady state signals in order to image the diffraction pattern, given by

the Pearcey function 3, that decorates the transverse cusp caustic. Transient signals were

used to study the merging of signals associated with the merging of rays as the caustic is

crossed. The temporal shape of the transient echoes was used to identify in the arrival

sequence which echoes touch the caustic and which echoes do not.

Some background information pertinent to the transverse cusp caustic will now be

reviewed. An important and unique aspect of the present experimental study is the use of

high frequency sound to produce the wavefield such that both the steady state wavefield

pattern and transient behavior could be observed for the same reflection geometry. The

transverse cusp caustic can be observed in a uv observation plane that is transverse to the

general direction of propagation of the wavefront that produces the caustic. A shear free

transverse cusp caustic is described by a cubic cusp curve in the observation

plane 3, DT(u - uc) 3 = v2, where u and v are transverse coordinates and the cusp point is

located at (uc,O). The wavefront that forms a shear free caustic, the caustic and the

associated diffraction pattern have a mirror symmetry about a horizontal axis. The
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transverse cusp caustic separates space into a region with three rays from the wavefront and

a region with one ray from the wavefront. On the transverse cusp caustic two of the rays

merge (are focused) and disappear outside the caustic.

Previously a particular example of an optical transverse cusp was observed that was

embedded in the ' yperbolic umbilic diffraction catastrophe4 . Away from the most singular

section of the hyperbolic umbilic, a transverse cusp diffraction catastrophe is evident as part

of the unfolding of the hyperbolic umbilic. Though this transverse cusp observed by

Marston and Trinh was imaged at infinity, from consideration of these observations the

local shape of the outgoing wavefront was described that forms a transverse cusp in a finite

observation plane as well as the farfield 2. This result motivated the form of the reflecting

surface h(x,y) mentioned above. The diffraction pattern that decorates this caustic was

shown to be the Pearcey function that describes the field near the cusp associated with the

cylindrical aberration 5.

Chapter 2 describes experiments to image the diffraction pattern associated with the

transverse cusp caustic. A wavefront with the local shape that forms a transverse cusp was

produced by reflecting sound from an appropriately curved surface. The wavefront and

associated diffraction pattern thus produced were studied in the lab in an observation plane

transverse to the direction of propagation. To study the transverse cusp caustic, computer

software was developed to record the amplitude of a reflected acoustical signal in a

transverse observation plane and display this information in a gray scale picture. This

provided a picture of the diffraction pattern produced by the reflection of an approximately

steady state signal from the curved surface. The pictures were then used to compare the

imaged diffraction pattern, to the theoretical calculations of the patterns.

There were no scaling parameters used in the comparison of the experimental data

and theory. The reflecting surface was measured to find the local surface height in the

region that produced the cusp point of the caustic. The location of the cusp point in the

observation plane was given by gray scale pictures of the wavefront reflected when an
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optical source and receiver were used in place of the acoustical source and receiver. The

small wavelength of the optical source produced a bright transition across the caustic (due

to the focusing of the two rays on the caustic). In the comparisons of the acoustical data

and theory the location of the optical cusp point was used as a guide for the placement of

the theoretical overlay on the acoustical picture. The differences between the location of the

optical cusp point and the acoustical cusp point, found by finding the location of best

agreement between the experimental and theoretical diffraction patterns near the cusp point,

were very small and could be accounted for as a small difference in the horizontal and

vertical positions of the optical and acoustical sources. The effect of the sign of hI, the

coefficient of x2 in the shape of the surface, being positive is discussed in reference to the

region where the opening rate of the transverse cusp caustic diverges.

In Chapter 3 the merging of the rays on the transverse cusp caustic are studied.

There is a finite path difference for signals propagating along different rays from the

wavefront. When transient (very short) source signals are used, the length of the ray paths

define a sequence of arrival for the associated signals. As the caustic is approached from

inside, two of these arrivals should merge as the rays merge, and be lost outside the caustic

as the rays are lost. The arrivals of the signals in the observation plane can be described by

a three dimensional travel time surface having the general shape of the singular surface of

the swallow tail catastrophe 6. The axes of the travel time surface are given by the

transverse axes in the observation plane and time. The travel time surface can be used as a

tool to locate caustics by the merging of rays.

Experiments are described in Chapter 3 in which the travel time surface of a

transverse cusp caustic formed by reflecting sound from a curved surface in water was

imaged. Travel time traces were recorded at equispaced vertical positions along vertical

cuts through the observation plane both inside and outside the caustic. These time traces

could be displayed in a waterfall format to show the travel time curve associated with the

horizontal position of each cut. The travel time curves of each vertical cut display the
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swallow tail shape associated with the travel time surface of the cusp caustic along with a

slowly varying contribution associated with propagation to the observation plane from the

exit plane. An optical gray scale picture of the wavefront reflected when the acoustical

source and receiver were replaced by an optical source and receiver was used as a reference

for the location of each time trace. As the observation point moves up into the cusp curve,

signals appear slightly before the cusp curve is reached due to a tunnelling of the acoustical

signal outside the caustic that can be associated with a ray having a complex phase 7

(complex point of origin). The signal that appears near the caustic reaches a maximum on

the caustic and then splits into two distinct signals after crossing the caustic. This

represents the merging of rays on the caustic and the appearance or disappearance of rays

as the caustic is crossed moving from outside or inside the caustic.

The information contained in the travel time surface is discussed in the later part of

Chapter 3. In the frequency domain, the diffraction pattern contains information about the

shape of the wavefront in the shape of the maxima and minima of the pattern. The widths

of the maxima and minima of the pattern are controlled by the carrier frequency of the

source signal. In the time domain there is more information available through the added

dimension of time. The sequence of the arrivals in the observation plane is controlled by

the shape of the wavefront giving information not directly available in the diffraction

pattern. The travel time surface in the observation plane gives a picture of the local shape

of the wavefront after propagating from the exit plane to a region of the observation plane.

This local shape of the wavefront near the caustic can be associated with the shape of the

wavefront near the exit plane through the classification of the caustic surface. This

classification gives the general form of the distance function for the wavefront.

Echoes from the reflecting surface may have touched the caustic at some point prior

to arriving in the observation plane. These echoes will have distorted temporal shapes

relative to the temporal shape of the source signal. The distorted shape are described by the

Hilbert transform of the temporal shape of the source signal 8.9.10. Chapter 4 shows the
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arrival sequence of the distorted and nondistorted signals for the transverse cusp caustic

formed by reflecting sound from a curved surface in water. For the reflecting surface used

the arrival sequence inside the caustic was predicted to be shh, where s represents a signal

with the general temporal shape of the source pulse and h represents the general temporal

shape of the Hilbert transform of the source pulse. Outside the caustic the single arrival

was predicted to be an h arrival. Time records showing the arrivals at equispaced

horizontal positions along the symmetry axis of the transverse cusp caustic are analyzed.

The arrival sequence shown in the time records agrees with the predicted arrival sequence

of shh inside the caustic and h outside. The surface parameters and their relation to the

arrival sequence are discussed along with some of the consequences of the distorted

temporal shape of the echoes that touch the caustic.
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CHAPTER TWO

THE TRANSVERSE CUSP DIFFRACTION CATASTROPHE PRODUCED

BY THE REFLECTION OF TONE BURSTS FROM A CURVED METAL

SURFACE IN WATER

2.1 INTRODUCTION

When sound propagates through an inhomogeneous medium or is reflected or

refracted by curved surfaces caustics may be formed. Caustics describe focal envelopes for

the rays traveling from a wavefront. Geometrical acoustics predicts unphysically divergent

amplitudes at caustics. Catastrophe theory relates the diffraction patterns of the caustics to

canonical diffraction integrals, removing the divergence at the caustic1.

The simplest focal envelope is the fold or Airy caustic 1-2.3 formed by a wavefront

curved along only one direction. The fold caustic marks the transition from a region with

two distinct rays from the wavefront (the bright region) to a region where there are no rays

from the wavefront (the shadow region). On the Airy caustic itself the two rays merge to

come from the same point on the wa iefront. The canonical diffraction integral that

describes the diffraction pattern near a fold caustic has same form as the Airy function.

The next more complicated envelope of rays is the axial (longitudinal) cusp

caustic 1.2.3. The axial cusp is a cubic cusp curve of the form D(z - zcp) 3 = x2, where z is

along the direction of propagation, (zcp, 0) is the location of the cusp point, and x is a

position transverse to the direction of propagation. The wavefront that forms the axial cusp

caustic is also curved along only one direction, however, this focal envelope marks a

boundary between a region with three rays from the wavefront and a region with one ray

from the wavefront. Inside the cusp curve there are three distinct rays from the wavefront

to each point. On the cusp curve two of the rays merge to come from the same point on the

wavefront. Outside the cusp curve only one ray is directed from the wavefront to each

point. - ne diffraction pattern decorating the cusp caustic was studied by Pearcey 4 in
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connection with the axial cusp caustic associated with the cylindrical aberration. Pearcey

was able to show that the diffraction pattern near the cup point could be described by the

Pearcey function, Eq.(12) below. The Pearcey function has the general form of the

canonical diffraction integral for the cusp caustic 1,2.

A transverse cusp caustic (TCC) is a cubic cusp curve that opens roughly transverse

to the direction of propagation. The general shape of the wavefront that forms an axial

cusp caustic has cylindrical symmetry, that is, it is only curved along one direction. A

wavefront curved along two directions transverse to the initial direction of propagation is

needed to form a TCC. The TCC shown in Fig. 1 is a cusp caustic without any shear

distortion opening transverse (perpendicular) to the general direction of propagation of the

initial wavefront. The generic shape of the wavefront in the exit plane that produces a TCC

without shear distortion in an observation plane proposed by Marston 5,6 is given by Eq.

(1) below. A paraxial approximation of the propagation integral associated with this

wavetront gives a relation for the pressure in the observation plane proportional to the

Pearcey function, Eq. (9)5.6. This wavefront, like that of the axial cusp caustic without

shear, is symmetric about the direction of propagation. However, unlike the axial

wavefront, the TCC wavefront is not a cylindrical wavefront. The caustic produced by the

TCC wavefront is an intrinsically three-dimensional caustic. An example is the general

surface shape shown in Fig. 2. Cuts through this surface in uv planes perpendicular to the

z axis exhibit the same general diffraction pattern in the transverse uv observation plane as

an axial cusp caustic exhibits in a longitudinal observation plane.

TCC's are often embedded in more complicated caustics. An example of a more

complicated caustic exhibiting a TCC is the asteroid caustic7 formed by the smooth joining

of four TCC's with the cusp points pointing away from the center of the caustic pattern.

Dong and Adler were able to detect the TCC as part of an asteroid caustic produced by

diffraction into the near-field shadow region of an elliptical disk 8 . Using high frequency
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Figure. 1 Geometry of the transverse cusp diffraction catastrophe. The wavefront in the

exit plane (x,y) propagates to form a shear free TCC in the observation plane (u,v).
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Figure. 2 The TCC forms a caustic surface in space. Cuts through this surface along

planes perpendicular to the direction of propagation exhibit the two-dimensional TCC. The

locus of cusp points in consecutive planes forms the -Aib of the caustic sturae.
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sound (5MHz) Dong and Adler were able to observe the shape of the caustic curve but

indicated they were unable to resolve the diffraction pattern that should decorate the caustic.

Another example of a more complicated caustic that contains a TCC is the

hyperbolic umbilic away from its most singular section. The hyperbolic umbilic contains a

TCC along with a fold caustic. Photographs taken by Marston and Trinh of the light

scattered into the rainbow region by a levitated water drop clearly show the TCC embedded

in the hyperbolic umbilic caustic9 . The diffraction pattern decorating the TCC is evident in

the optical data taken by Marston and Trinh. The local shape of the region of a wavefront

that produces an embedded TCC in a higher order caustic should be that given in Eq. (1).

The wavefront proposed by Marston, Eq. (1), has been used by Dean and Marston to study

the opening rate of the TCC associated with the hyperbolic umbilic away from its most

singular section 10.

The wavefields that form specific caustics can be produced by reflecting sound

from surfaces having generic shapes. The diffraction pattern decorating the caustic can be

imaged if steady-state conditions are simulated while the impulse catastrophe will be

evident for a pulsed source 2. In a homogeneous medium the shape of the reflected

wavefront is determined by the shapes of the incident wavefront and of the reflecting

surface. Thus for steady-state signals, the diffraction patterns decorating the caustics can

be studied by producing the wavefront that forms the caustic by reflecting sound from a

surface with the prorjer shape. This chapter will describe an experiment to image and study

the acoustical diffraction pattern of a transverse cusp caustic produced by reflecting long

ultrasonic tone bursts (approximating steady-state sound) from a curved metal surface, with

the local shape given by Eq. (3) below, in a homogeneous medium (deionized water).

Section 2.2 of the paper gives a review of the wavefront that produces the TCC in

subsection 2.2.A. Subsection 2.2.B is a list of the characteristics of the TCC which can be

observed in experimental data and used for comparisons to theoretical calculations. Section

2.3 describes the experimental setup and method used to image the diffraction pattern.
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Section 2.4 compares experimental and calculated diffraction patterns and gives the results

of the experiment. Section 2.5 discusses the results and concludes chapter 2. Appendix

2.A shows the derivation of the effective coordinate system that is used to relate the

theoretical calculations to the positions of the source and receiver. Appendix 2.B outlines

the experimental method for finding the quadratic approximation for the phase of the

acoustical source in the plane containing the reflecting surface. Appendix 2.C describes the

method used to approximate the acoustical reflection coefficient of the reflecting surface.

2.2 THEORY

A. A REVIEW OF A GENERAL WAVEFRONT THAT PRODUCES A

TRANSVERSE CUSP CAUSTIC ON PROPAGATION FROM AN EXIT

PLANE TO A DISTANT OBSERVATION PLANE

The generic shape of the wavefront that propagates from the exit plane, in Fig. 1

containing the point P', to an observation plane producing a TCC without shear is

locally5 ,6

W(xy)= -(a 1x2 + a2 xy2 + a3y2 + a4 x + aY). (1)

The coefficients necessary for the formation of a TCC are al and a2. Coefficients al and a2

control the shape of the caustic. Coefficient a3 affects the location of the caustic by

translating the wavefront along the x axis. To show that a3 acts only to translate the caustic

consider a translation of the origin along the x axis, x = x' - b,

W(x',y) = -[alx' 2 + a2X'y2 + (a3 - baz)y2 + (a4 - 2baI)x' + aSy], (2)

for b = a3/a2 the y2 term is eliminated. Terms linear in x and y only shift the location of the

cusp point (uc) and may be set to zero by a proper choice of origin. This wavefront is a

two-dimensional wavefront; requiring the coefficient a2 be nonzero means that the

wavefront is not a cylindrical wavefront. The caustic formed by this wavefront has the

reflection symmetry about the u axis in the observation plane shown in Fig. 1.
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The relevance of the wavefront having the form of Eq. (1) to the production of a

shear free transverse cusp was also noted by Nye et. al. 11. Generally the wavefront and

associated cusp caustic need not have the reflection symmetry implicit in Eq. (1). Such a

lack of symmetry gives rise to a sheared cusp which displaces the caustic away from the

svmmeL ''c cautic shown in Fig. I .13. The shear displacement vanishes as the cusp point

is approached. The wavefront shape in Eq. (1) was previously applied to the scattering of

light from an oblate drop of water by Dean and Marston 10. This shape was found to

describe the local shape of the wavefront that propagates to produce an optical transverse

cusp caustic within the unfolded hyperbolic umbilic diffraction catastrophe 9 .

The generic W(x,y) in Eq. (1) may be produced by the reflection of a signal

produced by a point source of sound from a surface of height 14

h(x,y) = hlx 2 + h2xy 2 + h3y 2, (3)

where linear terms may be included, though they only produce linear terms in the reflected

wavefront. The source is located in the source plane a distance Zs from the exit plane, and a

TCC is formed in an observation plane a distance z from the exit plane. Figure 3 shows the

relative positions of the reflector, source, and receiver planes. A paraxial approximation of

the shape of the reflected wavefront gives

W(x,y,us,vs) = 2h(x,y) + (x US + y ) X (4)
Zs 2Z (s

where us, vs, and zs give the location of the source point. The validity of the use of the

paraxial approximation for classifying the TCC is discussed in Appendix D.

Using the effective coordinates given in Eqs. (A 10), the reduced distance function

for the TCC used in the phase of the diffraction integral, Eq. (12), is

O(x,y,Ue,Ve) = -2h(x.y) - (Uex + Vey) + x2 +y 2  (5)

The two-dimensional diffraction integral Eq. (A12) may be evaluated to give the the

pressure in an observation plane proportional to the Pearcey function 5,6. 14

p(u'v) k 1/4 Po e-ik(r + rs) e-(±iit/4 ) e-(ikUe 2/4bl ') P+(w 2 ,wl) (6)
irrs 2,t Ibl'll/ 2Ia2'
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Figure. 3 Geometry for producing a TCC by reflecting the signal of a point source froin a

curved metal surface. The point source is located at (us, vs, zs) while the reflected

wavefront is sampled in the observation plane at the point (u, v, z).
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where r and rs are shown in Fig A1, t is the acoustical reflection coefficient, Po is the

source strength, a2' = -2h2, bl' = -2h1 + 1/(2ze), P+±(w 2,wl) is given by Eq. (9), and the

upper (lower) sign is taken when bl' < 0 (bl' > 0). The Pearcey function has the form of

the canonical diffraction integral of catastrophe theory that describes the diffraction pattern

of a cusp caustic 1,2. The control parameters of the Pearcey function are related to the

effective coordinates by 5,6 ,14

w2 = 12 [Ue - Uec] sgn(a2'), (7)

and

WI = k3 /4 lb1,11/4 (12) 1/2 V sgn(bl'). (8)

Plots of IP(w2 , wl)l can be used to represent the diffraction pattern of the TCC5,6.

B THE CHARACTERISTICS OF THE TRANSVERSE CUSP CAUSTIC

AND THE ASSOCIATED DIFFRACTION CATASTROPHE

The diffraction pattern of a cusp caustic is described by the Pearcey function
o

P+w2wl rxp+ (s4 s2

P_±(w2,w 0 exp[±i ( T + w2z-+ wis)] ds, (9)
-00

where w2 and wI are the control parameters of the catastrophe and for the TCC are given

by Eqs. (7) and (8). Figure 4 shows a contour plot of IP(w2, wl)l for Wl > 0. The

diffraction pattern, IP(w 2, w1)1, produced by the symmetric wavefront of the unsheared

TCC has the same reflection symmetry about the horizontal axis in the observation plane as

does the TCC wavefront. The contours of 1P(w2,w)1 for wI < 0 would be given by

reflecting the plot in Fig. 4 through the w2 axis. The contour plot in Fig. 4 of IP(w2, wl)l

for wI > 0, shows that the minima of the diffraction pattern are located symmetrically about

the horizontal axis. None of the minima of the pattern are located on the axis.
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Figure. 4 A contour plot of IP(w2, wI)I. The solid line leaving the origin to the left is the

cusp curve. To the right of the origin, the dotted line is the Stokes set. Note the minima

located outside but near the cusp curve. These minima are due to the interference of the real

and complex rays in this region.
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Our calculation of P(w2,wl) is based on an algorithm received from F. J. Wright1 5.

The Pearcey function has a highly oscillatory phase outside the central region containing the

stationary phase points. For this reason the integral is split into three separate integrals 16.

The middle finite integral contains all the stationary points and is calculated numerically.

The two outer infinite integrals are approximated using an asymptotic series keeping only

the first three terms. This approximation works well near the cusp point. Comparisons of

contours of IP(w2,wl)I calculated using this method and those calculated by Pearcey and

others agree well 4,17,18.

The geometrical acoustics approximation of the field in the observation plane is

recovered by using the stationary phase approximation to evaluate the diffraction integral.

The field in the observation plane is given by the sum of the contributions from rays that

originate on the wavefront. The contribution of each ray is proportional to the reciprocal of

the square root of the Hessian 5,6

p(u,v) 1/2, (10)

where

H(x,y,Ue,Ve) = 2 [ )22 (1
-x 2 y2  -oy

evaluated at the stationary points of the phase of the diffraction integral

x-2blx +a2'y 2 -Ue=0, (12)

= 2y(a2'x + 2b3') - Ve = 0, (13)

which define the rays to the observation plane. When the Hessian goes to zero the

geometrical approximation to the amplitude diverges. Simultaneous solution of Eqs (11)

and (12) with H(x,y,Ue,Ve) = 0 defines the cusp curve in terms of the effective and actual

coordinates respectively 5.614
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DT (Ue - Uec) 3 = Ve 2 , dT(U - Ucp) 3 = (v - vcp) 2 ,  (14a,b)

DT=4a2' -- 2b1 'b3' -32h2z2' 2 , ec - a2l'3 , dT = -3hz , (15a,b,c)
DT-= 27b1'2 ,a2' =27(1 + z -4hlz) 2

Z

where ucp = z(Uec - Us/Zs) and Vcp = z(vs/zs) give the actual location in the observation

plane of the cusp point, and dT is the actual opening rate in the observation plane having

units of 1/distance. The opening rate of the cusp curve is given by Eq. (15a) and the

effective cusp point location is (Uec, 0). There is a divergence in the opening rate, Eq.

(I5a), of the TCC for surfaces with hI > 0 at a particular value of Ze. This divergent

opening rate can make comparison of theoretical calculations and experimental data

difficult.

For observation points inside the cusp curve there are three real and unequal

solutions to the stationary phase conditions, Eqs. (12) and (13). Real solutions of the

stationary phase conditions locate the real rays passing through an observation point. As

the observation point approaches the cusp curve from the inside, two of the real solutions

merge at the cusp curve to form a doubly degenerate real solution. When the simultaneous

solution of Eqs. (12), (13), and H = 0 is done graphically the merging of the rays on the

caustic is evident. For observation points outside the region bounded by the cusp curve,

there are one real and two complex conjugate solutions.

Figure 5 shows the graphical solution of Eqs. (12), (13), and H = 0, for bl' =

0.0118 cm- 1, a2' = 0.00236 cm -2, Ue = 0.05, and Ve = 0.001, 0.0177, and 0.05.

Equation (12) is represented by the parabola opening to the left, Eq. (13) by the rectangular

hyperbola, and H = 0 by the parabola opening to the right. The parabola representing the

zeros of the Hessian does not depend on Ue or Ve. The intersection of the two parabola

give the location in the exit plane of the degenerate rays to the cusp curve. As the

observation coordinate along the symmetry axis moves outside the cusp curve (Ue becomes

negative), the parabola opening to the left, Eq. (12), moves further to the left. At the cusp
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Figure. 5 An example of the graphical solution to the stationary -,iase conditions to locate

rays in the exit plane. The intersections between the parabola opening to the left and the

two branches of the hyperbola locate real rays in the exit plane which interfere at a point

inside the cusp curve. The intersections of the two parabola locate degenerate rays in the

exit plane which interfere on the cusp curve itself.



point, Ue = 0, the two parabola will be tangent to each other at the origia where there will

be a triply degenerate solution to the three equations.

The hyperbola in Fig. 5 represent Eq. (13) for three different vertical positions.

When Ve r 0.001 the observation point is inside the cusp curve. The two branches of the

hyperbola intersect the parabola of Eq. (12) at three distinct places, representing the three

distinct ray locations in the exit plane. Moving up to Ve = 0.0177 the observation point is

on the cusp curve. the upper branch of the hyperbola is now tangent to the parabola of Eq.

(12) where Eq. (12) and the parabola representing H = 0 intersect. The noint where the

upper branch of the hyperbola is tangent to the parabola gives the location of the doubly

degenerate ray in the exit plane; the intersection of the lower branch of the hyperbola with

the parabola gives the location of the single ray. As the observation point moves outside

the cusp curve, Ve = 0.05, the branch of the hyperbola that was tangent to the parabola no

longer intersects the parabola, leaving only the intersection of the lower branch and only

one real ray location.

For observation points outside the cusp curve the steepest decent contour used in

the asymptotic approximation of P(w 2 , w 1) must be moved off the real axis 19,20. The

contour passes through the one real solution on the real axis but can only pass through one

of the complex conjugate solutions. A complex ray can be associated with the complex

saddle point that contributes to the amplitude outside the cusp curve 20 . This complex ray

contribution decays exponentially as the observation point moves away from the cusp

curve. However, near the cusp curve this ray is strong enough to interfere destructively

with the real ray and cause nulls in the cw wavefield. A line of minima can be seen in Fig.

4 just outside of the cusp curve. These minima are due to the interference between the real

ray and the complex ray20. The region where no complex rays contribute to the wavefield

is marked by the Stokes set of the Pearcey function 20
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5 + "427 w2
2 7 = w . ( 16 )

Between the Stokes set and the cusp curve there is one real and one complex ray

contributing to the wavefield. Outside of the Stokes set only the real ray contributes to the

wavefield. There is no more interference evident outside of the Stokes set. The three

regions of space defined by the cusp carve and Stokes set are shown in Fig. 6.
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W 1

5+ 27 w3 = w2/

W2

Figure. 6 A plane containing a TCC is divided into three regions by the cusp curve and the

Stokes set. 1) Inside the cusp curve there are three real rays to any point in the plane.

LI) Between the two curves there is one real ray and one imaginary ray to any point.

llI) Inside the Stokes curve there is only one real ray to any point.
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2.3 AN EXPERIMENT TO IMAGE THE TRANSVERSE CUSP

DIFFRACTION CATASTROPHE FORMED BY REFLECTION FROM A

CURVED METAL SURFACE IN WATER

Experiments were performed to image the wavefield reflected by a surface having

the local shape given by Eq. (3). These experiments were carried out in a water tank 230

cm long, 57 cm wide, and 50 cm deep. A source was located at one end of the tank and the

signal was reflected by a curved metal surface at the other end of the tank. A receiver was

mounted on a two-axis positioner located near the center of the tank to sample the reflected

wavefield. A schematic of the experimental set up is shown in Fig. 7.

To image the acoustical wavefield the signal from the receiving hydrophone was

amplified and rectified. A sample-and-hold circuit converted the amplitude of the the

rectified acoustical signal to a proportional dc level. An analog to digital data acquisition

board in a Macintosh II computer stored the dc level from the sample-and-hold as a twelve

bit digital value. Once the digital level was stored, the position of the receiver was changed

by the computer to build a raster picture of the reflected wavefield. The digital levels were

displayed as a gray-scale picture using 256 gray-levels.

A Panametrics V302 focused transducer with a 1MHz resonant frequency was used

in the acoustical experiments to approximate a point source. A quadratic approximation of

the phase of the source signal in the exit plane was found by fitting the phase of the

outgoing wavefront from the source transducer with an approximation for the phase of a

spherical wavefront as shown in Appendix B. The quadratic approximation of the phase

was used to determine zs for the source signal in the exit plane. The acoustical receiver was

a DAPCO (DAPCO Industries, Inc. 199 Ethan Allen Highway, Ridgefield, Conn. 06877)

bent needle hydrophone. This hydhrophone has a 900 bend in the needle allowing the active

element to be pointed into the reflected wavefield. The outer diameter of the needle case is

= lmm. The hydrophone frequency response curve is fairly flat in the region from

0.5MHz up to 4MHz.



26

Sound (or light) Hydrophone Surface
source (or photocell)

U

I " -

Photocell I uv Table Drive
Signal

Burst -
generator I Rectifier D/A

I converter

Delayed , Sml

Puls andMAC 11
generator Ho-ld computer

display

I - A/D
- converter

Figure. 7 A schematic diagram of the experimental set up.
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TABLE I. Measured surface parameters used in theoretical calculations.

h(x,y) = hIx 2 + h2xy2 + h3y 2 + h4x + h5y

Parameters Surface 1 Surface 2

hi -0.000310 cm- 1  0.00431 cm - 1

h2 -0.00117 cm - 2  0.00276 cm 2

h3  -0.01945 cm - 1  -0.0173 cm -1

h4 -0.154 -0.0645

h5 -0.00301 -0.00169
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Tone bursts were used to simulate a cw signal in the acoustical experiments. By

using bursts the source signal could be separated from the reflection. Reflections from the

sides and bottom of the tank and from the top of the water arrive at different times and

could also be gated out. Bursts were long enough that end effects due to the finite

difference in arrival times of the signals propagating along different rays were not sampled.

The gate used to set the sample region of the reflected signal was positioned to gate out any

spurious reflections from the tank. Figure 8 shows some representative scattered tone

bursts. Note the build up at both ends of tone bursts 1, 2, 4, and 5 due to the finite

difference in the arrival times of the different rays. Tone burst 3 does not show the same

build up as it is from the one ray region of the diffraction pattern.

An HP9125A calculator plotter was modified to allow control of the plotter arm by

two external analog sources. Mounted vertically over the water tank, the plotter was used

as a two-axis positioner for the receiver sampling the reflected wavefield. The position of

the receiver was controlled by connecting the analog inputs of the plotter to two digital to

analog converters in the Macintosh II computer. A raster scan of the wavefield was

produced by taking data on a grid of points in the observation plane and directly relating the

grid points to pixels on the screen of the Macintosh. Each pixel was set to a gray level

directly related to the amplitude of the reflected signal at the position in the observation

plane represented by that pixel. Lighter gray levels represent larger amplitudes with white

being the highest value and black the lowest.

In the experimental setup the acoustical source and receiver could be replaced with

an optical source and receiver. The optical source was a HeNe laser attached to a small

diameter (200 4.m core diameter) optical fiber. A phototransistor was used as the optical

receiver. The optical source was positioned at the focal point of the acoustical source,

while the optical receiver was placed on the two-axis positioner. The phototransistor circuit

provided dc signals proportional to the intensity of the reflected optical wavefield at each

point in a raster scan. These signals were used to form a gray scale picture of the optical
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Figure. 8 a) A gray-scale picture of the acoustical diffraction pattern in the observation

plane with f = 809 kHz, z = 66.3 cm, and Zs = 116.6 cm. The white dots on the picture

mark the position of the representative time traces shown in (b). b) Representative time

traces of the bursts reflected from the surface. Trace three originates in a region with only

one real ray. Trace one is in the region where there is one real ray and one imaginary ray.

Traces two, four, and five contain three real rays. Traces two and four are along the

symmetry axis where two of the rays arrive at the same time.
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wavefield in the same manner as in the acoustical experiments. The geometry of the optical

and acoustical experiments was held constant allowing the imaging of the TCC for

wavelengths separated by four orders of magnitude. Due to the short wavelength of the

light in water (X = 430 nm), the diffraction pattern is not observable in the optical

experiments. However, the imaged optical wavefields do exhibit a sharp increase in

intensity at the caustic that can be compared to calculated caustics.

The reflecting surface used was made of thin Apollo metal (Apollo Metals Ltd.,

1001 14th Ave., Bethlehem, PA 18018) bent in the general shape given by Eq. (3). The

sheet used for the surface was 15 mil thick. The acoustical reflection coefficient for the 15

mil Apollo metal in the frequency range from 0.5MHz to 2MHz is estimated in Appendix C

to be between 0.8 and 0.95 thus the Apollo metal is a good acoustical mirror. Apollo metal

has a polished surface making it a good optical as well as acoustical reflector. The Apollo

metal was flexible enough to be bent into the desired shape.

A surface height measurement of the reflecting surface was made on a grid of points

that included the area generating the cusp point. A mill with a digital readout showing the

relative position of the mill bit in a plane was used to make the measurement. The vertical

position was given by a dial indicator mounted to show the vertical position of the mill bed.

With the surface mounted square on the mill bed, the vertical position was adjusted at each

point on the grid until a reference indicator mounted in the bit holder read a preset reference

value. The reference indicator assured that each vertical position could be directly related to

a zero position on the surface. The surface was not deformed by the pressure of the

reference indicator.

The data obtained in the surface measurement was fit to h(x,y) = hlx 2 + h2xy 2 +

h3y 2 + h4x + h5y to find the local shape of the surface. The linear terms were included in

the fit to account for any linear offset or tilt in the surface. Though they have no bearig on

the comparison of the data to the theory they can have a significant effect on the fit

parameters. A multiple regression least squares fit was used on the data (the PROC GLM
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routine of SAS; SAS Institute, Statistical Analysis System). The surface parameters found

for two different surfaces are given in Table I. A plot of the surface generated by the

values measured for the hi of surface 1 is given in Fig. 9. The measured values of the

surface height parameters were used in comparing the theory to the data discussed below.
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Figure. 9 The measured surface parameters hlI - h5 of surface I were used to produce a 3D

plot of the surface used in the experiment. The actual size of the surface was 35 cm long

and 20.5 cm wide.
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2.4 RESULTS: COMPARISON OF THE ACOUSTICAL DIFFRACTION

CATASTROPHE TO THEORETICAL CALCULATIONS OF THE

EXPECTED DIFFRACTION PATTERN

A gray scale picture of the acoustical diffraction pattern produced by reflecting

1004kHz sound from surface 1 of Table I is shown in Fig 10a. The pattern exhibits the

symmetry about the horizontal axis of a cusp caustic with no shear distortion. The contou

plot of Fig. 10a in shown in Fig 10b. Note that none of the minima of the diffraction

pattern are along the symmetry axis. This agrees with the location of the minima of the

theoretical diffraction pattern IP(w2 , wi)1 in Fig. 4. The shapes of the contours in Fig 10b

are the same relative shapes as the corresponding contours in Fig 4. Thus the acoustical

diffraction patterns exhibit the general characteristics of a cusp diffraction pattern.

Figure 11 shows a complimentary set of acoustical and optical data. The acoustical

source is an 805kHz signal, and the reflecting surface is surface 1 of Table I. A contour

plot of IP(w2,wl) was used in Fig 1 lb to compare a calculation of the theoretical

diffraction pattern using the parameters defined by the experimental setup to the

experimental picture. Using the measured surface parameters, the frequency, and the

relative location in the raster scan, and Eqs. (7) and (8) a calculation of IP(w2,wl)1 could be

scaled to give IP(u,v)l. The converted IP(w2,wl)l => IP(u,v)i calculation was overlain on

the acoustical pictures by shading pixels corresponding to given values of IP(u,v)l. A

calculation of the cusp curve in terms of wl and w2

8 w2 3 = w12, (17)

is also overlain on the data to mark the transition from the three ray to the one ray region.

Outside but near the cusp curve shown in the acoustical overlay in Fig. I1 b there is

a line of minima in the acoustical data. These minima are due to interference between a

complex ray and a real ray. Further away from the cusp curve the interference weakens as
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Figure. 10 a) A gray scale picture of the acoustical diffraction pattern in the observation

plane due to scattering 1004kHz sound from surface I with z = 80.5 cm and zs = 113.2

cm. The picture shows that the diffraction pattern has the expected symmetry about the

horizontal axis of the cusp caustic. Note the line of minima along the outside of the

acoustical diffraction pattern due to the interference between a real ray and an imaginary

ray. b) A contour plot of the (a), note that the minima of the pattern are not located along

the symmetry axis. There is general agzreement between the shapes of the experimental

contours and those of the theoretical iffr-action pattern in Fig. 4.
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the exponential decay of the complex ray starts to dominate. Outside the Stokes set drawn

on the data there is no interference evident showing that only one ray exists in this region.

In the comparison of the theory to the data, the optical data in Fig 1 Ic was evaluated

first. The optical cusp was calculated using Eq. (14) with Uec set to zero. Since the same

source location was used for both the optical and acoustical data, the source coordinates are

set to zero in the dimensionless coordinates Ue and Ve, as they will only shift the location

of the cusp point. To calculate the cusp curve overlain on the optical data, Eq. (14) was

evaluated and each point in the calculation scaled to correspond to pixels on the computer

screen. Near the cusp point there is good agreement between the optical data and the

overlain cusp curve. The location of the cusp point found in the optical comparison was

used as a starting point for the acoustical comparison.

To evaluate the acoustical data in Fig 1 la, IP(u,v)l was overlain on the acoustical

picture, Fig 1 lb. The location of the cusp point found in the optical comparison was used

as a starting point for the acoustical comparison. In the acoustical comparisons the location

of the acoustical cusp point is varied to get the best agreement near the cusp point between

the maxima in the scaled Pearcey contours and the acoustical pictures. The location of the

acoustical cusp point is different from that of the optical cusp point. The difference in the

horizontal position is Au = 13 mm and in the vertical direction Av = 4 mm. This difference

could be explained by differences in th location in the source plane of the acoustical and

optical source points. The location of the acoustical focus is estimated to be along a line

from the center of the transducer and a deviation of 2.5 cm in either direction can change

the location of the cusp point in the observation plane by 1.5 cm. In the region where the

calculation of IP(w2,w )1 is best (near the cusp point), the separation of the maxima of the

contours agrees well with the separation of the maxima in the acoustical data. Moving

away from the cusp point the agreement deteriorates as in the optical comparison. This

comparison of theory and data al lowed only the location of the acoustical cusp point relative
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Figure. 11 Gray-scale pictures of the acoustical and corresponding optical data for

wavefronts reflected from surface 1. A contour plot of P(w 2, W1) is overlaid on the

acoustical data showing good agreement between theory and experiment. The last picture

is the optical data with the a calculated cusp curve overlain. The frequency of the acoustical

source signal was 805kHz,z = 67.3 cm and Zs = 111.7 cm.
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to the optical cusp point to vary, all other parameters in the calculation of the theoretical

diffraction pattern were determined by the experimental setup.

To show that the wavefront produces a diffraction pattern that scales properly with

frequency, the amplitude along the symmetry axis of two diffraction catastrophes produced

by surface 1 with different frequencies are compared to a calculation of IP(w2,0). The

amplitude along the axis is normalized to the largest amplitude for each data set to account

for any frequency response of the experimental equipment. Figure 12 shows plots of data

for two frequencies, 1.5MHz and 1MHz, along with a calculation of IP(w2,0)1. The cusp

point is assumed to be at the origin in each of the plots. For the data plots, positions in the

raster scan (u) are found using the location of the cusp point as the origin. Equation (7),

the frequency, and h I are then used to relate the scan positions to w2. Note that the

positions and relative amplitudes of the first three maxima and minima of the data for both

frequencies agree well with the calculation of IP(w2,0).

When the surface parameter hj is positive, as for surface 2 of Table 1, the opening

rate of the caustic DT, Eq. (15a), will diverge for a particular value of ze. Figure 13 shows

a plot of IDTI vs. receiver distance (z) for the two surfaces in Table I and Zs = 110 cm. The

IDTI for surface 1 is well behaved for all receiver locations. Surface 1 has a negative hl

parameter, thus b' = -2hI + 1/(2ze) is always nonzero for positive source and receiver

positions. Surface 2, however, has a positive hi coefficient. This allows bl' to go to zero

for particular combinations of source and receiver plane distances. Figure 13 shows this

divergence for surface 2. Using the value of hI in Table I for surface 2 and a source

distance of Zs = 110 cm, bl' goes to zero at z = zo = 122.7 cm. The opening rate goes as

1/(bl') 2 and diverges quickly as z approaches zo.

Figure 14 shows an example of the acoustical diffraction pattern produced by

reflection from surface 2. The source distance zs = 141.4 cm and receiver distance z =

67.6 cm were constrained in the water tank, used for the experiment, to the region near

where bl' went to zero. From Fig. 13 it can be seen that a small error in z or conversely zs
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can produce a large error in DT. The uncertainty in Dr makes a meaningful comparison of

the acoustical data to a calculated diffraction pattern difficult.
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Figure. 12 The normalized amplitude along the symmetry axis of acoustical diffraction

patterns for 1MHz and 1.5MHz and a calculation of P(w2, 0) are plotted vs. w2. The

position of the acoustical data is scaled using Eq. (13). The locations and relative

amplitudes of the first three maxima and minima are in good agreement. The acoustical

data was taken with z = 73 cm and Zs = 110.5 cm.
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Figure. 13 Comparison of the unitless opening rate given in Eq. (22a) vs. observation

distance z. for surface I and surface 2. The source distance used in the calculation was a

typical source distance for the experimental setup Zs = 110 cm. Note that the rapid

divergence of the opening rate for surface 2 with hI > 0 makes comparisons of theory and

experiment very sensitive to errors in either the observation or source distances.
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Figure. 14 A gray scale image of the acoustical diffraction pattern due to scattering of

1MHz sound from surface 2. The source and observation distances were z = 67.6 cm, Zs =

141.4 cm. The sensitivity of the calculated opening rate of this diffraction catastrophe

made a meaningful comparison of the theory to the data difficult The diffraction

catastrophe is shown with the same horizontal and vertical scale as in Fig. 11.
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2.5 CONCLUSION AND DISCUSSION

The wavefront that should form a TCC is given by Eq. (1). An evaluation of the

propagation integral for this wavefront shows that the diffraction pattern produced is

described by the canonical diffraction integral of catastrophe theory for a cusp caustic.

Appendix A describes in general how the wavefront can be formed by reflection of a point

source from a curved surface of local shape given by Eq. (3). The reflected wavefront

should display the characteristics of the cusp caustic in an observation plane transverse to

the direction of propagation.

In an observation plane the TCC exhibits the characteristics of a cusp caustic. The

diffraction pattern is described by the Pearcey function, Eq. (9). The caustic curve, evident

for large k, is given by Eq. (14) or Eq. (17). The separation of the maxima and minima

along the symmetry axis scales with wave number like k1/2 . Just outside the caustic are

interference minima that can be explained by interference between a real ray from the

wavefront and a complex ray that decays exponentially away from the caustic. Inside a

region marked by the Stokes set there will only be the real ray from the wavefront and

therefor no interference.

Comparisons of theoretical calculations and experimental images of the diffraction

pattern were made for surface 1 having the shape parameters listed in Table I. The caustic

produced by the wavefront was imaged using an optical source (large k). Comparisons of

the calculated cusp curve and the optical images agreed well near the cusp point as shown

in Fig. (1 Ic). With the cusp point located by the optical comparison there were no variable

parameters for the acoustical comparison. The diffraction pattern seen in the acoustical

images is described well near the cusp point by the Pearcey function, Fig. (1 Ib).

Interference nulls are evident outside but near to the caustic. Inside the Stokes set there are

no interference nulls. Comparison of the locations and normalized amplitudes of the

maxima and minima along the symmetry axis of acoustical images with different

frequencies show the expected scaling of the diffraction pattern with frequency, Fig. (12).
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The general agreement between the characteristics of the theoretical and experimental

diffraction patterns confirms that the proposed wavefront produces a TCC in an

observation plane transverse to the direction of propagation.

Some of the sources of uncertainties that may limit the quality of the agreement

between the measured and theoretical diffraction patterns in Fig. (11 b) will now be noted.

The agreement worsens away from the cusp point as u increases. This degradation is also

evident in Fig. (12). The following difficulties in the experiment are plausible causes of

this problem: (i) The form of the fitted equation in Table I is only applicable to the region of

the surface where rays are reflected to the region of the cusp point. Outside of this region,

deviations in the surface from that form would cause deviations in the pattern predicted by

Eq. (6). (ii) As evident from the phase measurements in Appendix B, the wavefront

radiated from the source did not have phase properties identical to those of a true point

source. This may be a consequence of some beam-like properties of the radiated

wavefront. The measured phase properties suggest there may be some uncertainty in the

true location of the effective source point. The analysis given in Appendix D suggests that

the use of the paraxial approximation does not introduce significant error in the theory for

the measurements shown.
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APPENDIX A: DERIVATION OF THE DIFFRACTION INTEGRAL FOR

THE REFLECTING OF SOUND PRODUCED BY A POINT SOURCE OFF

OF A CURVED SURFACE OF HEIGHT h(x, y).

This appendix gives the general paraxial approximation of the field due to the

reflection of a spherical source signal from a surface of height h(x,y). The geometry for

this general reflection problem is shown in Fig. Al. For a point source in the source plane

the incident pressure in the exit plane is given by Eq (A 1)21

Ps(xy) = P e 'R , (Al)

where P0 is the strength of the source, k is the wavenumber (k = 2nt/), and Rs is the

distance from the point source to a point in the exit plane. The Fresnel approximation to the

phase and denominator of Eq. (A l) is given by Eqs. (A2) and (A3) respectively

(Us v2 + 2
kRs - krs - k ( zs x+Ly)+k' + (A2)S2z

s

Rs = rs, (A3)

where rs is the distance from the source point in the source plane to the origin in the exit

plane. Paraxially the phase delay for the propagation from the exit plane to a reflecting

surface and back to the exit plane is given by the distance straight down from the exit plane

to the surface and straight back up from the surface to the exit plane

Ao(x, y) = -2h(x,y), (A4)

where h(xy) is the height of the reflecting surface in the exit plane. In the exit plane the

portion of the wavefront reflecting from the lower areas of the surface will be phase

advanced, due to a longer propagation distance to and from the surface, relative to the

portions reflecting from the higher parts of the surface. If h(xy) is considered positive

when it is in front of the exit plane and negative when it is behind, a signal that reflects

from a positive region of the surface will have a propagation distance, reiative to the
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Figure. Al The geometry used in the analysis of the diffraction produced by reflection of a

point source at S from a curved surface in the exit plane. The observation point is 0.
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propagation distance to the exit plane, that is shorter by -2h(x,y) while a signal that reflects

from a negative portion of the surface will have a longer propagation distance by 21h(x,y)l =

-2h(x,y), thus the minus sign in Eq. (A4). Using Eqs. (Al) through (A4) the reflected

pressure is paraxially approximated by

-ikr s  Vx+s y 2 + 2h(xy) (A5)
Pr(X,y) - p0 - exp [ -ik{ I-X z--- Zs+2L~) , (5

PrXY) rs zS z 2z5

where t is the acoustical reflection coefficient for the reflecting surface.

The Rayleigh-Sommerfeld integral relates the pressure in the observation plane to Pr

in the exit plane through

00

p(u,v) = 1 {f ) [exp(-ikR) ]dxdy. (A6)

-00

where R is the distance from a point in the exit plane to a point in the observation plane,

R = 4z2 + (x - u) 2 + (y - v) 2 . This integral may be approximated in the far field by

p(u,v) -k r(X,y) cosx -R dxdy, (A7)

where X is the angle between the z axis and R. The paraxial approximation is valid for

wavefronts travelling approximately parallel to the z axis, thus cosx can be approximated

by unity. Using the Fresnel approximation for the phase and denominator due to the

propagation to the observation plane gives

eik~R _exp[ -i {3x+y_ x2 +y 2 ](8---i-=-- exp I-ik {--x 2z L y, (A8)
R r Z 2z

where r is the distance from a point in the observation plane to the origin of the exit plane.

The pressure in the observation plane is now given by
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k exp[ik(r + r)] xp -ik[(u + ui)x + (+ )

p(u,v) P0 P 2z Zs

x2 + y2 (1+1) + 2h(x,y)] I dxdy. (A9)
2 z s

A set of effective coordinates related to the source and observation plane positions by 14

e s Ve 1 (A1Oa,b,c)'e = Z ze e = Zs

can be used to describe the reflected wavefield. In terms of the effective coordinates the

pressure is

k e-ik(r+rs)
P(Ue,Ve) -- poA2i rs

xffexp[-ikIUex + Vey - x2 + y2 + 2h(x,y)}] dxdy, (All)2ze

where Ue,Ve, and Ze are given by Eqs. (A10a,b,and c).

The above result for the pressure in an observation plane due to the reflection from

a surface of height h(x,y) can now be specialized to a surface with h(x,y) given by Eq. (3).

For h(x,y) with a small slope Eq. (A11) becomes

P(UeVe) e-ik(r+rs) ffeik dxdy, (A 12)
p(U'Ve --P°{2ni rrs

where the reduced distance function 0 is given by Eq. (5). This is in the same form as Eq.

(5) of reference 6 and the relation to the Pearcey function follows from the steps outlined in

Sec. II of reference 6. The result gives Eq. (6) which was originally derived in summary

form in Ref. 14.
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APPENDIX B: A QUADRATIC APPROXIMATION OF THE PHASE OF

THE SIGNAL PRODUCED BY THE SOURCE TRANSDUCER USED TO

ESTIMATE THE EFFECTIVE SOURCE DISTANCE Zs

The analysis given in Appendix A assumes a point source. However, in the

experiments discussed in section 2.3 a point source was not available and a focused source

was used to approximate a point source. The location of the focus of the source transducer

was used as the source location in the acoustical experiments. In order to find the focal

length zf of the transducer, the phase of the outgoing wavefront was recorded at different

points along an axis in an observation plane a distance ZT from the transducer and then fit to

a quadratic approximation for the phase of a spherical wavefront along a line. Figure B 1

shows the experimental setup for this measurement. Assuming that the focus of the

transducer is a point focus, the outgoing wavefronts of constant phase will be spherical.

Figure B2 shows a schematic of the outgoing wavefronts and the axis along which the

phase measurements are taken. Assuming an exp(-iox) time convention, the spatial phase

of the outgoing spherical wavefronts is given by exp(hix), where W = kr. Along the x axis

in Fig B2, a quadratic approximation of W may be obtained using the first two terms of a

binomial expansion of r = (Zs2 + x2) 1/2

k x

14=k zs 2 + x2 = kzs + zX2 + O(x4). (B1)

where it is assumed that Zs )> x.

The first term, kzs, in the expansion of W can not be used to find zs. The phase of

the wavefront found is given on an interval from -t to 7 thus any common phase delay due

to a common path length (for instance Zs) will be lost in the measurement. Only the

variation of the phase caused by the changing path length along the x axis can be used to

find Zs. If the phase is not collected symmetrically about the z axis it will introduce a term

linear in x in the phase approximation. To show this, replace x in Eq (B1) with x = x0 +

x', the phase is then given by
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Figure B I The experin .ental set up for estimating the focal length Zf of a transducer

focused to a point.
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Figure. B2 To find the position of the focus of the source transducer, the phase of the

outgoing wavefront from the transducer was measured along a line. The phase data was fit

to an equation that was quadratic in the position along the line. The coefficient of the

quadratic term in the fit equation gives the distance to the focus from the observation plane.
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k , k x, k ,,

-- = kzs + k x0 + Zs ' + A -, (B2)

where the coefficient of x' 2 is used to find Zs. Knowing zs the focal length of the

transducer is given by Zf = ZT - Zs.

Experiments to locate the focus were carried out using the geometry shown in Fig.

B I. A long, 1MHz tone bu st was sampled in a region of the burst where the signal

approximated a steady state signal. Tone bursts were used to separate the direct signal

from scattered signals that had different arrival times at the hydrophone. Using the travel

time of the front edge of the burst and the speed of sound in water at 18* C. the distance ZT

to the transducer was ZT = cit, where c = 0.148 x 106 cm/s. A time record of the sampled

region of the tone burst was recorded on an Analogic® Data Precision® Data 6000

(D6000). The D6000 was programmed to take a Fast Fourier Transform of the data and

save the phase of the 1MHz frequency component at each position along the x axis. Thus

the trend of the phase of the incident wavefront along the x axis could be recorded. Note

that the phase data on the D6000 forms an inverted parabola due to use of the exp(+ioxt)

time convention. For the exp(-iot) time convention the data shown in Fig. B3 forms an

upright parabola. The phase data from the D6000 was transformed to the exp(-icot) [the

phase was multiplied by -11 time convention and fit with a quadratic equation in x. The fits

of the phase data for four different values of ZT are shown in Table B 1. The phase data and

corresponding fit for the zT = 117.4 cm is shown in Fig. B3. When the values for zf from

Table B 1 were fit with a straight line they give a relation for the effective location of the

focal point of the source transducer for an observation plane a distance ZT away, zf (cm)

5.825 cm + 0.0928 ZT (cm). This relation was used to approximate the tocal length, zf, of

the source transducer for the signal radiated to a given distance, zT. The distance ZT was

taken to be the distance from the transducer to the reflecting surface. The effective focal

point was then used to approximate the effective point source distance in the evaluation of

the acoustical data, Zs = ZT - zf. The weak dependance of the apparent focal length zf on ZT
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is evidence that the wavefront leaving the focus does not fully simulate the wavefront

leaving a point source. This may be a consequence of the directionality or beam-like

properties of the source.
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TABLE B 1. Results of quadratic fits to the phase of the outgoing wavefront produced by

the source transducer locating the focus.

-. ________~ = a + bx +cx 2  
-- _ ___

ZT (cm) zS (cm) Zf (cm) a b (cm tl) c (cm-2 )

37.1 27.88 9.22 0.137 4.193 -0.761

85.8 71.82 13.98 -2.018 2.832 -0.233

105.6 91.20 14.40 -0.209 2.525 -0.233

117.4 100.68 16.72 -8.238 2. 499 -0.211
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f = 0.83132 + 0.0096512 x + 0.21084 x2 RI = 0.997
zT 117.4 cm; z. = 100.68 cm; zr = 16.72 cm

k = 42.45 cm-1

4
quadratic fit

3

o phase data
(rad)

2

00

10

-6 -4 -2 0 2 4 6
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Fio'ure B3 The experimentally measured phase of the outgoing wavefront from the

transducer located z = 117.4 cm from the observation plane. A quadratic, shown overlain

on the data, was fit to the data to find the distance from the observation plane to the

effective focal point.
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APPENDIX C:ESTIMATION OF REFLECTION COEFFICIENT FOR THE

METALLIC SHEET

The acoustical reflection coefficient of the reflecting surface was estimated by

considering only the inertial impedance of the surface to the incident wavefront 22. The

acoustical reflection coefficient is the ratio of the reflected pressure to the incident pressure

r = lprl/lpil. This is related to the power reflection coefficient Rby R= r2 . For a lossless

plate the sum of the reflected power and the transmitted power must equal the incident

power, thus R+ T = 1, where t = Iptl2/Ipi12 is the power transmission coefficient. For a

slab that is bounded on both sides by water the plane wave transmission loss is given by22

T:(00) =  1 + I Zs Cos Oi Y)-I (C1)

where Zsj is the acoustic impedance of the slab approximated below, p = 0.9986 gm/cm 3

and c = 0.148 x 106 cm/s are the density and speed of sound in water at 180 C, and Oi is

the angle of incidence of a plane wave. Thus the reflection coefficient is

k(Oi) = 1-( jI + I Kas OI) - 1, (C2)
-pcco

using the relation between T and R This approximation assumes that the thickness of the

slab sl << sl/4 and [Zsi/Ziocal(back)] < 2rt(Isl/w), where Xsl is the wavelength of sound in

the slab, Ziocal(back) is the local specific acoustic impedance Ziocal(back) = pwCw, and Xw,

cw, and Pw are the wavelength and speed of sound in water and the density of water

respectively. The above assumptions give the componerts of the fluid velocity normal to

the slab on each side of the slab equal to each other vfront = vback = vsl.

If the slab i. considered to be a perfectly limp plate, the acoustic impedance of the

slab ZI is due to the inertial resistance of the mass of the plate to the pressure of the sound

field. From Newton's second law
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aVSl
msl F= Pfront - Pback, (C3)

where msl = 0.317 gm/cm 2 is the mass per unit area of the slab and Vsl is the velocity of the

the slab due to the difference in pressure between the front face and the back face of the

slab, Pfront - Pback. With a time dependence of the form exp(-iot) for the velocity, Eq.

(C3) becomes, with co = 2nf

-imsl2nfvsl = Pfront - Pback, (C4)

which defines the inertial impedance of the slab22

Z= Pfront - Pback = -i21tfmsl. (0)

VSI

The reflection power coefficient is now given by

'W~d + I -i2nfmsl,Co

1 2 pc

- 1- [1+ (2)fmsI)2 cos2(Ei)]-," (C6)
2pc

At normal incidence Oi =0 the ratio of the incident to reflected pressure is r = Z/2

= 0) = 0 1 + (2Kfms)2 ]-1. (0)

2pc

Figure C I shows a calculation of r vs f using Eq. (C7). The acoustical reflection

coefficient approximated in the manner described above is positive and goes to

r = I as the frequency increases. For the frequency range used in the acoustical

experiments the range of r approximated from the calculation is 0.8 _< r _ 0.95. The

approximation used was for a flat slab with normally incident acoustical plane waves.

However, the reflecting surface was curved and the source was approximately a point

source. This could bring the approximation into question. To test the validity of the

approximations used to calculate r the incident signal and transmitted signals were

measured for a 900 kHz tone burst. The incident signal was 1.4 Vpp while the transmitted

signal was 0.15 Vpp giving a transmission coefficient t = 0.107. This is related to the
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reflection coefficient by r = (1 - t2)1/ 2 = 0.994. This measured value of r at 900 kHz is

very near the value given in Fig. C1 for the approximation of the reflection coefficient, r

0.987.
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Figure CI A plot of the reflection coefficient due to inertial impedance of the material used

to form the reflecting surface used in the experiments. Above 500kHz the reflection

coefficient is approximated by 1.
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APPENDIX D: THE PARAXIAL APPROXIMATION AND

QUANTITATIVE AND QUALITATIVE ERRORS

The analysis that classifies the caustic formed by W(x,y) in Eq. (1) or by the

reflection of the wavefront produced by a point source of sound from a surface with the

local shape given by Eq. (3) involves the paraxial approximation of the distance function

4(x,y,u,v)

4D(x,y,u,v) = { [z - W(x,y)12 + [u - x] 2 + [v y]2 } 1/2. (DI)

The distance function (D represents the distance from a point on the wavefront (x,y) to a

point in an observation plane (u,v) a distance z from the exit plane. The qualitative

behavior of the wavefront in the observation plane is described by the caustic classified by

the singularities of the mapping of the wavefront in the exit plane to the wavefront in the

observation plane where the singularities are given by

a( ( 2cjD a2(D (D42 0.(D)2)
0, y -x 2 ay2 -T -

The reduced distance function O(x,y,u,v) is the paraxial approximation of 4D(x,y,u,v)

O(Xyuv) = z - W(x,y) + (u - x) 2 + (v - y ) 2  (D3)

2z

Use of this approximation in Eq. (D2) yields the transverse cusp caustic surface given by

Eq. (14) and Eq. (15).

Dangelmayr and Wright consider the paraxial approximation of the distance

function that forms a hyperbolic umbilic caustic 23. They show that the classification of the

caustic given by the paraxial approximation of the distance function 0 is the same as the

classification found using the full distance function D. The transverse cusp caustic

embedded in an hyperbolic umbilic is therefor also paraxially determined. Thus 4, the

paraxial approximation of 0, should give the same classification for the caustic as D itself

and no qualitative information about the caustic surface is lost in the paraxial

approximation.
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The classification of the caustic is not affected by the size of the terms that are

ignored in the paraxial approximation, however, for the paraxial approximation to be valid

these terms must be small. For the distance function (D of Eq. (DI) the paraxial

approximation is given by the binomial expansion of Eq. (D1), with W(x,y) / z << 1, to first

order in b where
b- (u -x) 2 + (v -y) 2

2z (D5)

and terms of order b2 and higher are ignored. When the next higher order term in b is

considered, the approximation to the distance function has the form

(I(x,y,u,v) = O(x,y,u,v) + Oc(x,y,u,v), (D6)

where the leading correction term is

=x v -[(u - x)2 + (v - y)2 1
c~x,y,u,v) =-2z

[j(u x 2 (- y) 2 1 W(x,y) (74z2  z '

where terms of O{ [W(x,y)/z 2 } have been dropped as W(x,y) / z << 1. Conditions, from

the form of 0c, for the paraxial approximation to the distance function to lead to negligible

error in the caustic location near the cusp point are noted below.

To show that this term Oc is small consider the wavefront given in Eq. (1). The

wavefront produced by reflecting a spherical wavefront from a surface with the local shape

of Eq. (3) has the local shape of Eq. (1) if the source is located at the origin (us--O, vs=O).

With a distant source, the paraxially approximated reflected wavefront is

W(x,y) = al x2 + a2xy 2 + a3y 2 . (D8)

where
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1 1

al = -2h 2 +2--s a2 = -2h2, a3 = -2h3 +2s (D9a,b,c)

The location in the exit plane of the rays to the cusp point if (Xcp, Ycp) with Ycp = 0 and xcp

= -b3 / a2 , where

1
bi = ai + (DIO)

The location of the cusp point in the observation plane is given v = 0 and Eq. (15b) with bi'

-- bi and a2' -- a2, and Ucp = -2zblb3/a 2. With the cusp point as defined above, the

correction term to the reduced distance function at the cusp point is

(u! - xc) 2 rI(ucp - xc) 2 W(xco,0) -Oc(Xcp,Ycp,Ucp,Vcp) = - p - 4Z2 [_ - (DlI)
- -z - 4z2  " - z - J

It has been argued 13 that this correction will be negligible if each of the terms in the square

bracket is << 1. At the cusp point W(xcp,0) / z is given by

_________l - albl2I<1. (D 12)
z za22

The second term in the square bracket in Eq. (D11) can be written

(Ucp - Xcp) 2 
-(-2zblb3 + 223 (4z2) (2zb3)2 (-bI +1)2 (4z2)-l

4Z2  a2  a2 a2 2z

(b3aI)2 <. (D13)

a2

For surface I in Table I and the representative source and receiver distances z = 68 cm and

Zs = 110 cm the inequalities in Eqs. (D12) and (D13) are seen to hold with albl 2 / za22 =

0.0357 and (b3al / a2)2 = 0.0125. Thus for the distances used in the experiment the

paraxial approximation of the distance function (D is a valid approximation.

In addition to these geometric conditions, if the phase of the wavefield is to be

accurately approximated, it is necessary for k~c << 1 with x and y corresponding to the rays

to the observation point (u,v,z).
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CHAPTER THREE

OBSERVATION OF THE TRANSIENT CHARACTERISTICS AND THE

MERGING OF RAYS FOR THE WAVEFIELD FORMING THE

TRANSVERSE CUSP CAUSTIC

3.1 INTRODUCTION

Wavefronts reflected or refracted by curved surfaces can form caustics that are the

focal envelopes of rays from the outgoing wavefront. As a caustic is crossed from the

bright side in an observation plane to the dark side at least two rays from the wavefront

merge and are lost. When a transient source is used, the arrivals of the transient signals

associated with merging rays also merge and disappear after the caustic is crossed 1. The

more commonly investigated situation is the use of catastrophe theory to associate

structurally stable caustics with canonical diffraction integrals for steady state wavefields 2.

The structural stability of the caustics means that the classification of the caustic survives

small perturbations of the curved surface or the propagating medium. The emphasis of the

present chapter is on the merging of transient signals for one example of a structurally

stable caustic: a transverse cusp caustic. The signals are associated with reflections from a

curved metal surface in water. The investigation of the merging of such echoes may prove

useful for inferring the local shape of the reflecting surface.

Prior to considering transverse cusps, the merging of transient arrivals for a simpler

situation, a longitudinal cusp, will be discussed. Figure 1 shows a longitudinal cusp

caustic and tLo wavefront that propagates to form the caustic. This figure will be used to

illustrate the merging of rays on the caustic. The longitudinal (axial) cusp caustic was

studied by Pearcey in connection % ith (he cylindrical aberration 3. The cusp caustic

associated with the cylindrical aIheMition opens parallel to the direction of propagation of

the wavefront and is described h% the general equation
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DL(z - Zcp) 3 = x2 , (1)

where DL is the opening rate of the cusp curve with units of I/distance and x and z are

shown in Fig. 1. The wavefront that produces the longitudinal cusp caustic is curved along

one direction4 . This wavefront is mirror symmetric about an axis along the direction of

propagation and forms a caustic that is also mirror symmetric along the same axis. The

wavefront in Fig. 1 is given by W(x) = Wcox 2/[x 2 + (Wo/3)] where P and W., > 0. The

cusp curve formed by the wavefront W(x) is described by Eq. (1) above with Zcp = 1/(23)

and DL = 8/(27Kzcp), where K = I + 1/(fDWoo) is the coefficient of cylindrical abberation.

In the bright region inside the cusp curve, point A, there are thr,,e rays from the wavefront

and outside the cusp curve in the dark region, point C, there is only one ray from the

wavefront. In the center of the caustic at point A the three rays from the wavefront are d,

e, and f. Ray paths d and f represent the same path lengths to the observation point A

which are shorter then ray path e. Moving to the left from A to C along the cut through the

caustic shown in Fig. 1, on the cusp curve, point B, there are two rays b and c where ray

c, the longer of the two, is the result of the merging of rays e and f on the caustic. As the

observation point moves from A inside the caustic to B on the caustic the locations of both

the rays e and f on the wavefront W(x) move toward the location of ray e on the wavefront.

After crossing the wavefront, point C, the rays that merge on the cusp curve are lost

leaving only one ray.

Consider transient signals propagating along the rays shown in Fig. 1 at a speed c.

To reach the point along the cut shown in Fig. I where the ray the signal is propagating

along crosses the cut, it will take each signal a time ti = ri/c where ri is the distance along

the ray from the wavefront to the cut. Inside the cusp curve there will be three arrivals

times ti i=1,2.3 associated with the three ray paths to each point. On the cusp curve there

are only two arrival times as two of the rays have merged to come from the same point on

the wavefront. Outside the cusp curve there is only one arrival time as there is only one ray

path through each point. When the arrival times are displayed along consecutive lines
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Figure 1) A calculation showing the wavefront W(x) = Wox 2 / [x2 + (W0Jd)] where W. =

I and 13 = 0.001. For large values of x, W(x) = W., while for small values of x, W(x) =

Ex4 + 13x 2 where £ = -P 2/W.. The local shape of this wavefront forms a longitudinal cusp

caustic described by Eq. (1). The location of the cusp curve for the wavefront shown is

also. Outside the cusp curve (C) there is only one ray passing through each point. On the

cusp curve (B) there are two rays passing through each point, one of which is due to the

merging of two rays on the cusp curve that are lost outside the cusp curve. Inside the cusp

curve (A) there are three distinct rays passing through each point.



69
corresponding to equispaced positions along a cut similar to the one shown in Fig. 1, the

arrival time surface has the general form shown in Fig. 2. In Fig. 2 the horizontal axis

represents the position of a hypothetical receiver in a receiver array of 41 receivers placed

along the cut shown in Fig. 1 with the center receiver at point A. The arrival times of the

signals propagating along rays from the wavefront are designated by the points in Fig. 2

with time increasing along the vertical axis. Positions 1-7 and 35-41 in Fig. 2 are outside

the cusp curve and there is only one arrival time shown. The two receivers positioned on

the cusp curve are at positions 8 and 34. There are two arrival times shown for positions 8

and 34 in Fig.2, the first is the single ray that was left outside the cusp curve and the

second is due to the two rays that merge on the cusp curve. Moving inside the cusp curve

at positions 9-33 there are three arrival times shown for each position. Position 21 shows

only two arrivals, however the first arrival is the simultaneous arrival of two signals that

travel along ray paths of equal length and thus arrive at the same time, point A in Fig. 1.

The symmetric transverse cusp caustic (TCC) is a cusp caustic that opens roughly

perpendicular (transverse) to the general direction of propagation of the wavefront. This

caustic is mirror symmetric along an axis perpendicular to the direction of propagation and

is defined by Eq. (12) below. The wavefront that produces the TCC, described by Eq.

(10) below 5, is curved along two directions and has the same mirror symmetry as the TCC.

This wavcfront forms a caustic surface in space similar to the surface shown in Fig. 3. The

TCC observed in the observation plane is a cut through this surface in a uv plane a distance

z from the exit plane. The diffraction catastrophe exhibited by the TCC is the same as that

of the axial cusp caustic. The diffraction pattern has been used (in Chapter 2) to

demonstrate that the wavefront given by Eq. (10) exhibits the characteristics of the

wavefront in catastrophe theory that produces a cusp caustic.

In the frequency domain each catastrophe is associated with a diffraction pattern and

caustic. The association of the caustics to the diffraction patterns is through the distance

function used in the phase of the diffraction integral as in Eq. (2) below. Ray locations on
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Figure 2) An example of the gerf-ral shape of the travel time curve associated with the

longitudinal cusp caustic for a horizontal cut that passes through a cusp curve. The points

in the figure represent the arrival times of signals that propagate to different positions along

a horizontal cut through a cusp curve similar to that shown in Fig. 1. This -.avel time curve

can be related to Fig. 1, assuming a uniform sound speed c, by dividing the distance, ri,

along the ray paths from the wavefront W(x) to the horizontal cut, by c (t = ridc). Positions

1-7 are outside the cusp curve like point C in Fig. 1. As the observation position moves

toward the cusp curve the ray path, marked a in Fig. 1, becomes longer and the arrival time

of the signA propagating along this ray path is later. On the cusp curve, position 8 in Fig.

2 and (B in Fig. 1), there are two arrivals, rays b and c, the later of which is due to two

rays t"at mcige on the cusp curve. Moving inside the cusp curve, positions 9-33, there are

three separate arrivals where at position 21 the early arrival is due to the simultaneous

arrival of two signals that travel along different ray paths that have the same length (A in

Fig. 1).
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Figure 3) The caustic surface formed by a wavefont with the general shape in the exit

plane given by Eq. (10). A transverse cusp caustic described by Eq. (12) is formed in a uv

plane that cuts through the caustic surface a distance z from the exit plane. The rib of the

caustic surface is formed by the locus of cusp points in consecuitive uv planes cutting

through the surface. There is only one ray path to each point outside the surface, while

inside the surface there are three ray paths to each point. On the caustic surface two of the

ray paths merge to come from the same point in the exit plane and are subsequently lost as

the caustic surface is crossed moving outside.
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the wavefront are given by the ray condition for the distance function of the diffraction

integral, Eq. (5) below. The ray location can be used in the distance function (D to find the

distance r a signal travels along a ray path to an observation point. Thus the distance

function that classifies a caustic also classifies the associated travel time surface that

displays the merging and disappearance of signals on the caustic.

Many scattering problems do not lend themselves to the use of long (many cycle)

source signals. One example is seismography. In seismography short single cycle bursts

from a point source are scattered by boundaries and sound speed gradients in the earth's

crust and the scattered field is measured at the surface. The scattered signals are collected at

the surface by either an array of receivers or by positioning the source along an array of

points and using the source as the receiver also. The collected signals are displayed vs

surface position and arrival time 6 in a manner similar to Fig. 2. This displays cuts through

the travel time surface of the wavefield scattered from the boundary. The travel time

surface displays the arrival times of all the rays from the wavefront to an observation plane

adding an extra dimension, time, to provide information about the wavefront. Seismic

signals scattered from curved boundaries form travel time surfaces that can be categorized

in terms of the structurally stable caustics 7. Figure 2 shows the general shape of the travel

time surface associated with a common boundary shape similar to the shape of the

wavefront in Fig. 1 when Lhe surface is buried sufficiently deep 6,8. In the vocabulary of

seismology, the travel time surface shown in Fig. 2 is an example of a triplication 9,10.

Identification of triplications is thought to be useful for inferring the local shape of the

reflecting surface 6-9.

Chapter 3 describes experiments to image the travel time surface in a transverse

observation plane associated with a TCC. The wavefront shape given by Eq. (10) below,

was produced by reflection of signals from a transient ultrasonic source. Section 2.A

reviews the general theory relating the travel time surfaces and the caustic surfaces. The

specific case of a TCC is formulated in section 2.B. Section 3 describes the experimental
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set up and technique used to image the travel time surface. Section 4 gives a calculation of

the travel time surface of the TCC and compares this to the results of the experiments.

Section 4 discussions the different orientations of the travel time surfaces for different

reflecting surfaces. Appendix A shows the method used to calculate the travel time surface

and location in the exit plane of the rays to the observatior plane.

3.2 THEORY REVIEW

A) GENERAL ASPECTS OF TRAVEL TIME SURFACES ASSOCIATED

WITH CUSPOID CAUSTICS

Catastrophe theory uses canonical diffraction integrals to describe the diffraction

patterns near caustics. The general form of the diffraction integial is1.2 ,11

00

-(C,k) = Jdx b(a,C) exp[ ik4)(a,C)], (2)
-00O

where 4)(xC) is the distance function associated with a particular catastrophe, b(a,C) is a

slowly varying amplitude function, and k is the wave number of the signal k = 2t/X. The

state variables a = (a1, a2, a3, ...) and control parameters C = (CI, C2, ...) in 4) are the

confined in this paper to be the exit and observation plane coordinates respectively. With

the state variables a and control parameters C as defined above the distance function

4)(a,C) gives the total distance traveled by a signal that propagates from a source to the

reflecting surface then to a receiver 7. The diffraction patterns described by Eq. (2) are

often referred to as diffraction catastrophes. When ray theories are used to describe the

catastrophes there is a divergent amplitude occurring on the associated caustic of each

catastrophe. The caustics are focal envelopes of rays originating on the wavefronts that

produce the diffraction catastrophes.
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The catastrophes are classified by the number of state variables needed to describe

the most singular section of the catastrophe, the corank N; and the number of control

parameters needed to describe the caustic, the codimension K. Cuspoid catastrophes are

the simplest of the catastrophes as the most singular section of the caustic surface

associated with the catastrophe can be described by a single state variable1 . Thus there is

only one state variable necessary to describe a cuspoid catastrophe a = (x) and the corank

of cuspoid catastrophes is N = 1. For cuspoid catastrophes , the distance function of the

diffraction integral 4(x,C) has the general form1l 9

xK+2  xK xK-I
() (x,C)= K+ 2 -CK_-CKI K -...- CI x, K=0, 1,2,..., (3)

where K is the codimension of the catastrophe. Away from the caustic, the amplitude of

the diffraction pattern may be approximated using the stationary phase approximation of

Eq. (2). In the stationary phase approximation P(C,k) is proportional to IH(x,C)1-1/2

where

H(x,C) = (4)
3x 2

and is evaluated at each of the stationary points of 4D(xi,C) defined by the ray condition

a i 0, (5)
x x

where the xi are the locations of the rays in the exit plane. The caustic surface of each

catastrophe is defined by the singularities of the stationary phase approximation of P(C,k)

where H(xi,C) = 0. Figure 4 shows the caustic surfaces in control space of the first three

cuspoid catastrophes. The diffraction pattern is exhibited when continuous or very long

(many cycle) source signals are used.

When short single cycle signals are used to produce the wavefield, the temporal

response of the wavefield can be studied. This adds an extra dimension. time, unavailable

in the frequency domain diffraction pattern. The temporal response of the wavefield can be
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Figure 4) The caustic surfaces of the first three codimension cuspoid caustic (a) fold

caustic K=1 is described by a single control parameter and thus is represented by a point,

(b) the cusp caustc K=2 is described by two control parameters and is given by a curve in

a plane, and (c) the swallow tail caustic K=3 described by three control parameters forming

a surface in three dimensional space. The travel time surface of a cuspoid catastrophe of

codimension K has the same form as the caustic surface of codimension K+1.
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found using the ray condition Eq. (5) to locate the rays in the exit plane. The location of

the rays in the exit plane can be used in the distance function of the canonical diffraction

integral to find the distance along a ray path to a point in the observation plane. The time it

takes for a signal from a wavefront that forms a cuspoid caustic to reach the observation

plane is

ti = (D(xi,C) / c, (6)

where c is the speed of sound in the propagating medium and the xi are the locations in the

exit plane of the ray paths that pass through the observation point given by C.

Equation (6) along with the ray condition Eq. (5) define a parametric equation for

the travel time surface associated with the caustic corresponding to 4(x,C). Using Eq. (3).

the caustic surface of the cuspoid catastrophe of codimension K is defined by the

simultaneous solution of the ray condition for a cuspoid caustic

(: K+I K1 X- ,=0

= x X - CKxK- - CK- -2 - ... - CI = 0, (7)

and Eq. (4)

x2 = (K+l)xK - CKXK 2 - CK- 1XK-3 - - C2 = 0. (8)

The travel time surface of the cuspoid caustic of codimension K is defined by the

simultaneous solution of the Eq. (6) for a cuspoid caustic

xK+2 xK xKI

(D(x,C) -t = K+ 2 -CK- K - CK- 1  - .- Cjx - t = 0, (9)

and the ray condition Eq. (7). Comparing Eqs. (7) through (9), the parametric definition of

the travel time surface given by Eqs. (7) and (9) has the form of the equations that define

the catastrophe surface for the cuspoid of codimension K+I with t becoming the control

parameter CI for the travel time surface 7. The parametric equations given by Eqs. (7) - (9)

for the travel time and caustic surfaces of the cuspoid caustic of codimension 2 (the cusp

caustic) are given in Table I. The more general scaling relationship between the control
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TABLE I. Defining equations for the travel time surface of the cusp caustic (K=2) and the

caustic surface of the swallow tail caustic (K=3).
Travel time surface defining equations for codimension K=2

(cusp caustic)

D- t = 0 x4  x2
x-T-C2i2-Clx-t=0

ray condition '( x3 -C3x-C2=0

Caustic surface defining equations for codimension K=3
(swallow tail caustic)

ray condition
x =o x4 - C3x2 - C2x - CI = 0

Hessian = 0 a2-
ax2 =-4x3 - 2 C 3x - C 2 = 0
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TABLE UI. Relation of the parameters defining the cuspoid catastrophe of codimension

K+1 to the parameters defining the travel time surface of the cuspoid

catastrophe of codimension K.

codimension K + 1 codimension K

CK+lI KI(K+2) CK

CK(K-1 )/(K+2) -CK-1

C2/(K+2) C1I

C i/(K+2) t
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Figure 5) The singular part of the travel time surfaces for the (a) fold caustic, (b)

longitudinal cusp caustic (Fig. 1), and (c) the transverse cusp caustic. (a) The travel time

surface of the fold caustic (K = 1) has two effective control parameters Atj and U - Uo

where At has two values when U < Uc (the caustic has not been crossed). (b) The travel

time surface of the longitudinal cusp caustic similar to ihat shown in Fig. 1 ,ias three

control parameters: Atj, u (a coordinate transverse to the directioo' of propagation of the

wavefront), and z - Zcp. When inside the cusp caustic, z > Zcp, there are three values of At

for each point (u, z). (c) The travel time surface for a transverse ,.usp caustic similar to that

of the cusp caustic formed by a transverse cut through the surface show,, in Fig. 3. There

are three effective control parameters Atj, v. and u - ucp, with three values of Atj when

inside the caustic u > ucp.
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parameters of the caustic and the travel time surfaces for a cuspoid caustic of codimension

K are given in Table II.

The analysis given above shows that for the cusp catastrophe (K=2) the travel time

surface should have the general form of a swallow tail caustic (K=3). Figure 5 shows the

travel time surfaces for the fold, K=1, (Fig. 5a) longitudinal cusp, K = 2, (Fig. 5b) and

transverse cusp (Fig. 5c) catastrophes. The fold caustic can be described with only one

control parameter and appears as a point in Fig. 4. The cusp caustic is defined by two

control parameters and the swallow tail requires three control parameters. The travel time

surface of the fold catastrophe requires the single control parameter CI of the fold caustic

and the arrival time of the transient source signal. Thus the travel time surface of the fold

catastrophe has two effective control parameters and has the general shape of the cusp

caustic, Fig. 5a. Similarly the travel time surface of the cusp catastrophe requires the two

control parameters of the cusp caustic, CI and C2, and the arrival time giving three effective

control parameters for the travel time surface of the cusp catastrophe, Fig. 5b and 5c.

Marston 12 illustrates the above result for the fold caustic.

B) TRAVEL TIME SURFACE OF THE TRANSVERSE CUSP CAUSTIC

The transverse cusp caustic (TCC) is a cusp caustic that opens roughly transverse to

the general direction of propagation of the wavefront producing the caustic. Unlike the

wavefront that produces the axial or longitudinal cusp associated with the cylindrical

aberration 3, the TCC wavefront is curved in two directions 5. The general shape of the

wavefront that produces a TCC is given in the exit plane by

W(x,y) = - (aIx 2 + a2xy 2 + a3y 2 + a4x + a5y), (10)

where the last three terms only affect the location of the cusp in the observation plane. This

wavefront can be produced by the reflection of the signal produced by a point source of

sound, from a surface with the general shape 13.14
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Figure 6) Geometry for the reflection of the signal produced by a point source of sound

from a curved surface to produce the wavefront that propagates to form a transverse cusp

caustic. The distance function D for the propagation of the source signal from the point

(us,vs,zs) in the source plane to the P on the reflecting surface and then to the point (u.v.z)

in the observation plane is given paraxially by Eq. (15).
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h(x,y) = hlx 2 + h2xy 2 + h3y 2 + h4x + hsy, (11)

where the linear terms produce linear terms in the scattered wavefront and may be set to

zero by a proper choice of origin. The wavefront defined in Eq. (10) produces a cusp

caustic in an observation plane transverse to the direction of propagation defined by

DT(Ue - Uec) 3 = Ve 2, (12)

where Ue, Ve, Uec, and DT are defined below in terms of the source, and receiver

coordinates and the surface parameters h. Figure 6 shows the geometry for the reflection

of the spherical source signal from the curved surface.

The propagation integral that gives the scattered field in a distant observation plane

can be approximated paraxially by5.13

p(u,v)- kqi eik(r +rf) f JeikO(Ue.VexY) dx dy, (13)
-00-CIO

where q is the strength of the source, r and rs are the distances from the origin in the exit

plane to the observation point (u,v) and the source point (us,vs), 4 is the reflection

coefficient of the surface, and k is the wavenumber of the wavefront (k = 27rt/ = o/c).

The paraxial reduced distance function 4 is given by

O(Ue,Ve,X,y) = bl'x 2 + a2'xy 2 + b3y 2 + Uex + Vey, (14)

where bi'= -2hi + 1/2ze, a2' = -2h 2 , Ue = u/z + us/zs, Ve = v/z + vs/zs, and

ze = (l/z + l/zs) -1. The coordinates (u, v, z) and (us, vs, zs) give the location of the

source and receiver. The complete distance function of the TCC is

4(x,y:Ue,Ve) = O(Ue, Ve) + O)(X, y, Ue, Ve), (15)

where 0 = r + rs is a slowly varying function of the source and receiver positions and does

not depend on the exit plane coordinates x and y, thus it may be pulled out of the diffraction

integral Eq. (1.3). Using Eq. (14), Eq. (13) can be evaluated to give the pressure in an

observation plane as
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k1 ikUpu)k 4 q exlkr+ s +it k
p(uv)irrs(2t0b a exp(ik(r2a )/-)- 4-b) P+(w 2 ,w1), (16)

where the upper (lower) sign is used when bl' < 0 (bl' > 0)5,13. In a distant observation

plane the diffraction catastrophe associated with the TCC is proportional to the Pearcey

function 3 P(w2.wl)

000

P(.20 A e [2 Is )] ds. (I i)

-000

The control parameters w2 and Wl are related to the observation plane coordinates by
1

w2 = (jIbj) ( Ue - Uec) sgn(a2'), (18a)

1 , \1
Wl = (k2 1bl)4 ,a- Ve sgn(b1'), (1 8b)

where Uec = Uc/Z + us/is = - 2b 1'b3'/a 2', Uic is the horizontal location of the cusp point, and

k = 2ir/ is the wave number of the source signal.

The distance function of the diffraction integral of the TCC contains two variables

x and y, however the integral can be evaluated to give the TCC diffraction catastrophe in

terms of the Pearcey function which has only one sta*e variable. The evaluation of the TCC

diffraction integral amounts to a smooth coordinate transformation to the Pearcey

function 13. Note the phase of the Pearcey function in Eq. (17) has the form

s K+2 sK

4'(s,C) - K+2 - C2-i- - Cls, (19)

where K = 2 and for the TCC CI = --wlI and C2 = -w2, thus the Pearcey function is in the

general form of the cusp catastrophe diffraction integral. The diffraction pattern and

associated caustic of the TCC have the same general form as the diffraction pattern and

associated caustic of the cuspoid caustic of codimension K = 2 (the longitudinal cusp

caustic). The merging and disappearance of the rays of the the K = 2 cuspoid caustic in a
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longitudinal observation plane are described by a travel time surface with the general shape

of the cuspoid caustic of codimension K = 3. A TCC will have rays merging and

disappearing on a cusp caustic similar to the longitudinal cusp caustic except in a transverse

plane. Thus the transverse travel time surface should have the same general shape in a

transverse observation plane as the longitudinal travel time surface in a longitudinal

observation plane, the swallow tail caustic surface Fig. 4c.

To calculate the travel time surface of the TCC, the ray condition for the reduced

distance function of the diffraction integral O(x,y;Ue,Ve) can be used. The location in the

exit plane of the rays from the wavefront is given by the ray conditions for the two

dimensional TCC diffraction integral

ax (xiYi) = 0 ; ay (xi,yi) = 0, (20a,b)

where the location of the ray in the exit plane is (xi,yi). When the observation point is

inside the cusp curve there will be three real ray locations in the exit plane. When the

observation point is on the curve two of the rays will have merged, and outside the cusp

curve there is only one real ray from the wavefront. Equations (20a,b) and Eq. (14) give

the locations of rays in the exit plane as the simultaneous solutions of

- (xjy) = 2bl'xi + a2'Yi2 - Ue = 0 (21a)

ay I(xiYj) = 2yi ( a2'xi + b3') - Ve = 0. (21 b)

The solution of Eq. (21a) for xi can be used in Eq. (21b) to give a cubic equation in yj

yi3 -a ,(Ue- Uec) + b ' Ve = 0. (22)

The solution shown in Appendix A, of Eq. (22) for yi and then Eq. (2 1a) for xi gives the

location in the exit plane of the ray or rays to the point in the observation plane given by Ue

and Ve. The total distance traveled along a ray path that passes through a point in the
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Figure 7) The calculated traN el time surface of the transverse cusp caustic. (a) The slowly

varying contribution of the form 0o/c in Eq. (25). (b) The term due to the reduced distance

function of the diffraction integral 0,Eq. (14). This contribution has the general shape of

the travel time surface of the transverse cusp shown in Fig. 5c. (c) The sum of the two

contributions shown in a and b giving the complete travel time surface of the transverse

cusp caustic.
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observation plane is given by the complete distance function D(x,y;Ue,Ve), the distance

from the source to the reflecting surface plus the distance from the reflecting surface to the

observation plane. In Fig. 6 this distance is the distance from (Us,Vs,Zs) to P on the

surface plus the distance from P' to (u,v,z) in the observation plane.

The paraxial distance function for reflecting from the curved surface that forms a

TCC is given by Eq. (15). For a uniform medium with a constant sound speed c, the travel

time surface of the TCC is given by

At ='(xi,Yi;Ue,Ve) (3Ati c (23)

where (xi,yi) is the location in the exit plane of the ray paths that pass through (Ue,Ve).

For observation points in the observation plane inside the cusp curve there will be three real

values of Ati. On the cusp curve there will be two real values of Ati, one associated with

the two ray paths that have merged to come from the same point on the wavefront. Outside

the cusp curve there will only be one real value of Ati. The arrival time surface given by

Eqs. (15) and (23) can be written in two parts, one a slowly varying portion 00 that does

not describe the merging of the rays on the caustic and the other depending on the reduced

distance function 0 of the wavefront in the exit plane which will describe the swallow tail

characteristics of the travel time surface due to the of merging rays on the caustic. Thus Ati

may be written

=o(Ue,Ve) + Oc(xi,Yi;Ue,Ve) (24)c c

4 22 2 (5

Oo(Ue,Ve) = r+rs = ' z2+v2+u2 +  zs + vs +u (25)

Equation (25) gives the paraxial approximation to the travel time surface due to the

reflection of the spherical point source from the origin in the exit plane. The reduced

distance function O(x,y;UeVe) describes the contribution to the travel time surface due to

the shape of the reflecting surface.
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Figure 7a shows a calculation of Oo/c, using the parameters given below, that gives

the dependence of the travel time sttrface on the distance from the source poit to the

reflecting surface plus the distance from the reflecting surface to points in the observation

plane. This carries no information about the surface other then the distance of the source

and receiver points from the surface. Characteristics of the travel time surface due to the

shape of the reflecting surface are shown in Fig. 7b. The travel time surface shown in Fig.

7b, calculated using O/c and the parameters given below, has the general form of the

singular surface of the swallow tail catastrophe shown in Fig. 4c with C, <-4 t, C2 -- Ve,

and C3 <-> (Ue - Uec). The complete travel time surface is shown in Fig. 7c; this is the

combined contributions shown in Figs. 7a and 6b, O/c = 0o/c + O/c = t. The interesting

features of the complete travel time surface (O/c) are the swallow tail features describing the

merging of rays on the caustic. Figures 7a-c show travel time surface contributions 0o1c,

O/c, and the travel time surface 4)/c calculated using Eqs. (21)-(23). The values of the

parameters used in the calculations were bi = 0.0118 cm- l , a2' = 0.00236 cm- 2, b3' =

0.0491 cm - 1, z = 68 cm, zs = 170 cm, us = -15.0 cm, vs = 0, and the horizontal positions

relative to the cusp point of the cusp curve for each cut through the travel tLme surface

shown are Ue - Uec = (u - uc)/z = - 0.0397, 0.0, 0.0397, 0.0794, 0.1191, 0.1588,

0.1985. These values correspond to experimental values for the experimental data to be

discussed later.

The distance function 4)(x,y;Ue,Ve) depends on Ue = u/z + us/Zs and Ve = v/z +

vs/zs which are symmetric in the source and receiver coordinates, thus the travel time

surface can be mapped by scanning the source and holding the receiver fixed. Figure 7c

could have been calculated using a fixed value of u and v in the observation plane and

incremental values of us and vs in the source plane. The measured travel time surface due

to the reflection of a point source by a surface curved into a shape locally described by Eq.

(11) should exhibit the same general shape as Fig. 7c when either the receiver or the source

is scan'ed while the other is held fixcd.
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3.3 AN EXPERIMENT TO MAP THE TRAVEL TIME SURFACE OF THE

TRANSVERSE CUSP CAUSTIC

Experiments were performed to map the travel time surface of the wavefield

generated by reflecting a high frequency single cycle burst from a curved metal surface in

water. The local shape of the metal surface was given by

hm(x.y) = mIx 2 + m2xy 2 + m3y 2 + m4x + m5y, (26)

comparing Eq. (26) to Eq. (11) the metal surface had the proper local shape to produce a

TCC when it scattered the signal from a point source. A measurement of the surface height

hm(x,y) was made and fit to Eq. (26) giving the parameters mi of the reflecting surface

shown in Table III. Fig. 8 shows a plot of the surface shape calculated using the values of

the surface parameters in Table III.

The acoustical source and receiver were 0.25 in diameter non-focused transducers

with a 10 MHz resonance frequency manufactured by Sonic Instruments Incorporated

k3onic Ir stniments Inc. transducer type CBA 10-1). One transducer was placed in a

source plane approximately 170 cm from the reflecting surface. The pulsed source was

assumed to approximate a point source ?rid the source distance was the distance to the

reflecting surface from the source transducer. The receiving transducer was mounted on

the uv positioner shown in Fig. 9 about 68 cm from the surface. The receiving transducer

could be positioned at different points in the observation plane to map the travel time

surface. In order to map the travel time surface, 20.48 4.s time traces of the reflected signal

were recorded on a Data Precision Data 6000® (DATA 6000) along vertical cuts through

the observation plane at seven different horizontal positions relative to the cusp curve.

Figure 10 shows how the cuts were positioned relative to the cusp curve. Vertical time

traces were 5.4 mm apart while there were 27 mm between the horizontal cuts. Time traces
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TABLE III. The measured surface parameters for the metal reflecting surface.

mi measured value

ml -0.000310 cm - 1

m2 -0.00117 cm- 2

m3 -0.0194 cm -1

m4 0.154

m5 - 0.00301
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Figure 8) A plot of the reflecting surface used in the travel time experiments calculated

using the surface parameters given in Table III. The wavefront given in Eq. (10) has the

same general shape.
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Figure 9) Schematic diagram of the travel time experiment. Both the optical and acoustical

experiments are diagramed with the optical experiment shown in dashed lines.
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were recorded along each of the cuts and transferred to a Macintosh II computer where they

were displayed in a waterfall format to show the corresponding cuts through the travel time

surface. Figurc 1 shows a scan well inside the of the caustic, the vertical position of the

receiver corresponds to the vertical position of each time trace in the Fig. 11 while the

horizontal axis represents increasing time to the right.

The source for the pulses used in the experiment was a Smith Kline Instruments

(SKI) medical ultrasound driver modified to allow it to be triggered at a slow rep-rate. The

SKI driver provided a unipolar pulse of approximately - 70 V in amplitude with a rise time

on the order of nanoseconds and an approximately 3 pts exponential tail. This short spike

produced an approximately 1MHz single cycle pulse from the source transducer in the far

field. The bipolar shape of the source pulse was due to the direct signal from the

transducer face and the inverted signal from an effective ring source lying around the

transducer perimeterl5. A representative source pulse, measured by rotating the receiver

transducer so that it pointed at the source transducer approximately 1 m away, is shown in

Fig. 12. Note that there was li::le ringing in the source transducer signal, the bipolar shape

is due to the diffraction effects discussed above. A sharp source signal was necessary to

allow the resolution of the different arrival times in the observation plane.

Equations (16) and (23) depend on the source and receiver coordinates in the same

manner through Ue and Ve. Ue and Ve are symmetric in the source and receiver coordinates

Ue = u/z + us/zs and Ve = v/z + vs/zs, thu. it should be possible to image either the

diffraction catastrophe or the travel time surface by scanning the source transducer while

holding the receiver fixed. The source and receiver transducers were symmetric for the

travel time surface experiments, in that both source and receiver were the same type of

transducer. This allowed for switching the source and receiver transducers in order to map

the travel time surface by scanning the source transducer and holding the receiving

transducer fixed. The source-receiver switch was done by connecting the transducer on the

uv positioner (the old receiver) to the SKI driver and the fixed transducer, at the back of the
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Figure 10) Location of the travel time cuts relative to the cusp curve in the observation

plane. The time traces were taken along the vertical cuts at horizontal positions relative to

the cusp point given the horizontal positions marked a-g.
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Figure 12) The receiving transducer was pointed directly at the source transducer with a

separation of approximately 1 m to collect a time trace of the source pulse. The shape of the

source pulse used in the time traces was bipolar due the a contribution form the planar face

of the transducer and an effective ring source lying on the perimeter of the transducer. The

source transducer used was a heavily damped transducer thus the high amplitude spike

used to drive the transducer produced very little ringing allowing for a high resolution of

thc reflected signals.
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tank (the old source), to the DATA 6000. With this set up the source transducer could be

scanned while the receiving transducer was held fixed. The travel time surface mapped

with this set up was displayed in the same manner as described above.

Gray scale pictures of the optical cusp curve were used as a reference for the

acoustical time traces. A small diameter (200 pm core diameter) optical fiber attached to a

HeNe laser (X = 430 nm in water) was the optical source. In Fig. 9 the optical schematic is

shown by the dashed lines. The short wavelength of the optical source did not allow for

the resolution of the diffraction pattern. However, because of the short wavelength, there

was a sharp transition from the bright three ray region inside the cusp curve to the dark one

ray region outside the cusp curve. The location of the optical source and receiver in the

optical experiments was approximately the same as the location of the acoustical source and

receiver in the acoustical experiments. Thus the cusp curve imaged in the optical

experiments is the cusp curve associated with the acoustical travel time surface. This

provides a good picture of the cusp curve in the observation plane that can be used as a

reference for the location of the acoustical time traces.

A phototransitor mounted on the uv positioner was used to acquire a raster scan of

the optical wavefield in the observation plane. The signal from the phototransitor, which is

proportional to the intensity of light at that point, was associated with the gray scale of a

pixel on a Macintosh II computer screen. Each pixel on the computer screen corresponded

to a position in the raster scan of the observation plane, thus a picture of the cusp curve in

the observation plane could be produced. Positions in the observation plane at which the

acoustical time traces were taken corresponded to pixels in the optical raster picture. These

pixels were marked along the bottom and left sides of the optical picture forming a grid of

points where the acoustical time traces were taken. Figure 13 shows an optical gray scale

picture that corresponds to an acoustical data set. The squares along the left side of Fig. 13

mark the vertical position of each time trace, while the squares along the bottom mark the

horizontal position of each vertical cut through the travel time surface.
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Figure 13) Optical raster picture used as a reference for the location of the travel time cuts

shown in Figs. 16 and 17. The small squares on the left side of the picture show the

vertical location of each of the time traces along each horizontal cut. The small squares

along the bottom of the picture labeled a-g show the horizontal location of each of the cuts.

Relative to the horizontal position of the cusp point the horizontal positions are u - uC = -

27am. 0.0. 27mam. 54mm. 8 1 mm, I 08nm, 1 35nam the vertical positions relative to the

vertical position of the cusp poi [t are v - v= -lO8nini to Og8mm by 5.4mm steps.
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3.4 RESULTS: THE CALCULATED TRAVEL TIME CURVES AND

TRAVEL TIME SURFACES IMAGED BY REFLECTING SOUND FROM A

CURVED METAL SURFACE IN WATER

A) CALCULATED TRAVEL TIME CURVES FOR THE TRANSVERSE

CUSP CAUSTIC

Figures 14a-g show cuts through the travel time surface (4)/c) calculated at

horizontal positions relative to the cusp point (Ue - Uec) of the cusp curve corresponding

to positions a-g in Fig. 13. Each figure consists of the calculated arrival times associated

with the real rays originating on the wavefront and passing through a given point in the

observation plant (u,v). There are 41 vertical positions v in each cut witi pusition 21

being on the symmetry axis of the cusp curve. The horizontal axis of each figure

represents increasing time going to the right and is 20.48 pts long. Relative to the cusp

point of the cusp curve, the horizontal location of the cut in 13a is outside the cusp curve,

13b is on the cusp point, and 13c-g are inside the cusp curve. The relative horizontal

positions of each calculation from a-g are Ue - Uec = (u - Uc)/Z = - 0.0397, 0.0, 0.0397,

0.0794, 0.1191, 0.1588, 0.1985. Figures 15a-g show the reduced travel time surface due

to 0(x,y;Ue,Ve). The travel time surface cuts in Figs. 14a-g are a superposition of the cuts

in Figs. 15a-g (0/c) and 0o/c of Eq. (24). Figure 14 should represent the actual measured

travel time surface while in Fig. 15 the slowly varying background function 0o/c has been

subtracted off to more clearly show the swallow tail properties of the travel time surface of

the TCC.

In Figs. 14a and 14a there is only one arrival at each of the vertical positions and

the curve is smooth through the center time trace. Figures 14b and 15b also only have one

arrival at each vertical position, however at the cusp point the travel time curve is less

smooth as seen at the origin in Fig. 4c. At the cusp point, represented by the twenty first

vertical position in Figs. 14b and 14b, all three rays from the wavefront have merged to
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rigure 14) Caiculated travel time cuts of the transverse cusp caustic using the total distance

function t = (1/c = /c + 0o/c [Eq. (24)]. The horizontal positions correspond to the

positions labeled a-g in Fig. 13. Cut (a) is the smooth travel time curve outside the cusp

curve. The horizontal position of cut (b) is on the cusp point and the cusp curve is slightly

pointed. Cuts (c)-(g) are inside the cusp curve and show the increasing width of the tail as

the effective horizontal positions of the cuts move further inside the caustic.
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Figure 15) The travel time surface contribution due to the reduced distance function of the

wavefront O/c. The effective horizontal locations are the same as in Figs. 13 and 14. Cut

(a) is the smooth cut outside the cusp curve. Cut (b) shows the unsmooth form of the

travel time curve through the cusp point better the 14b as it is not smoothed by the slowly

varying contribution from 0o/c. Cuts c-g are inside the caustic showing the widening of the

tail as the horizontal cut location moves further into the cusp curve. This travel time surface

has the general shape of the swallow tail caustic which is the general travel time surface of

the cusp caustic. Figure 14 should represent the data better as it contains the contribution

of the slowly varying term 0o/c.
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come from the same point. The pointed shape of the travel time surface at the cusp point is

more apparent in Fig. 15b as it is not softened by the contribution to the travel time surface

due to 00 in Eq. (24). In Thom's description of the swallow tail surface 16 , at the origin

(for the travel time surface Ue = Uec) the rib lines of the curvilinear tail of swallow tail

caustic come together in a cusp where at the origin the surface has a point of infinite

curvature. This agrees with the less smooth shape of Figs. 14b and 14b.

Just inside the cusp curve Figs. 14c and 14c show what appear to be two arrivals in

the middle three vertical positions. The upper and lower early arrivals are near the caustic

curve and are due to the single arrival of the two rays that merge on the caustic. The central

late arrival is on the symmetry axis of the caustic and due to the simultaneous arrival of two

rays from different points on the wavefront that have the same acoustical path distance to

the observation point. In each of the calculations along the symmetry axis with Ue > Uec

there will be a simultaneous late arrival by two rays from different portions of the

wavefront. These rays do not merge on the symmetry axis, they simply represent equal

path lengths to the observation point. The merging rays are represented by the signals,

located symmetrically about trace 21, that merge and disappear as the cusp curve is

crossed. Notice that the width of the tails of the travel time curves in Figures 14c-g and

15c-g grows as the horizontal observation plane position moves through the cusp curve,

while the later region of the surface (the wings) move closer together. The growth of the

tail is a characteristic of the swallow tail caustic, Fig. 4c, moving along the positive C3

axis 16 . Thus the calculated travel times for the TCC have the form of the swallow tail

caustic surface plus a slowly varying background contribution of the form 0o/c.
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B) THE IMAGED TRAVEL TIME CURVES FOR A WAVEFRONT THAT

FORMS A TRANSVERSE CUSP CAUSTIC, COLLECTED USING A

FIXED SOURCE AND A SCANNING RECEIVER

Data taken with the receiver scanned in the observation plane as described in Sec. IH

is shown in Fig. 16. Each time trace is 20.48 gis long. The horizontal positions of the cuts

shown in Fig. 16 correspond to the horizontal positions a-g in Fig. 13. In Fig. 16a there is

only one arrival at each vertical position as would be expected outside the cusp curve. The

travel time surface cut shown in 15a is a smooth curve corresponding to the swallow tail

surface, in the Fig. 4c, when C3 < 0. On or near the cusp point Fig. 16b shows an

increase in amplitude near the central time trace. This cut is slightly pointed near the center

similar to Fig. 14b which is the calculated travel time surface cut at the cusp point. As the

horizontal observation location moves inside the cusp curve, Figs. 16c-g, the tail of the

travel time surface grows while the wings move closer together as do the tail and wings of

the corresponding calculations, Figs. 14c-g.

The general form of the travel time cuts shown in Figs. 16a-g agree well with the

corresponding calculations in Figs 13a-g. A smooth background travel time contribution

given by 0o/c of Eq. (24) can be seen in the convex shape of the tails and the extra

curvature in the wings that is also evident when Figs. 14a-g are compared to Figs. 15a-g.

The contribution to the travel time surface due to the specific shape of the reflected

wavefront is evident in the existence of the tail and wings for observation points inside the

caustic. The tails represent the merging (focusing) and subsequent loss of rays on the cusp

curve. The travel time surface displayed by these travel time cuts has the general shape of

the swallow tail caustic surface associated with the cusp catastrophe, superposed on a

slowly varying contribution from 0,/c of Eq. (24).

For the calculations shown in Figs. 14 the relative horizontal positions used were

the same as those of the data shown in Figs. 16. The parameters used in the calculation

were also obtained from the experimental setup (bl' = 0.0118 cm - 1, a2' = 0.00236 cm- 2,
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b3' = 0.0491 cm- 1, z = 68 cm, Zs = 170 cm, Us = -15.0 cm, vs = 0). Thus the calculations

in Figs. 14 should represent, up to a constant time delay, the travel time surface imaged

experimentally. To compare the calculations with the data, both were displayed with the

same scales and absolute length for the time and vertical axes. The calculations (Fig. 14)

were then overlain on the measurements (Fig. 16) using the arrival time of the early signal

along the symmetry axis (trace 21 in both the data and calculations) to compare the

calculated arrival time surface with the experimental arrival time surface. This comparison

does not attempt to compare the absolute arrival times: only the arrival times relative to the

other signals in the travel time curve are compared and thus the shapes of the surfaces.

The absolute distances z and zs were not determined with sufficient precision to facilitate a

meaningful comparison of the absolute times. Each travel time curve is a slice through the

travel time surface at constant Ue - Uec.

Comparing Figs. 14 and 15 as discussed above shows there is very good

agreement between the qualitative shape of the travel time surfaces of the calculations and

the data. The size and shapes of the tails and wings in Figs. 14c-13f and 15c-15f agree to

within approximately a ±llis error in the arrivals when the central trace is used as the guide

for the comparison. A ljIs error amounts to an error in the estimate of the propagation

length of approximately 1.5 mm. The size of the tail in Figs. 14g and 15g agrees well,

however, the experimental tail at this position is not as concave as the calculated tail.

Figures 14b-14c and 16b-16c do not have the distinct tails to use for the comparison but the

wings in each of the figures do show the same qualitative agreement between the relative

arrival times of the signals. For Figs. 14a and 15a the smooth shapes of both the

calculated and measured travel time curves outside the cusp curve agree to within ±li s.

One source of the error in matching the calculated and measured travel time curves

is the distortion of the pulse occurring along ray paths that touch the caustic surface due to

the signal being phase advanced by 11/2 1'9 '17. The shape of the phase advanced signal will

contain a precursor that arrives earlier then the elementary geometrical arrival time predicted
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by propagation along a ray at speed c. In the calculation and comparison there were no

arbitrary scaling factors used. The parameters used in the calculation were all determined

by the measured surface parameters hm and the experimental set up. Each of the calculated

time traces is 20.48 pIs long, the same as the measured time traces, and each uses a range of

Ve = v/z + Vs/Zs from -0.159 to 0.159 with Vs = 0, for the value of z in the experiment (z =

68 cm) a vertical scan in the observation plane of 21.6 cm.

In the tail of the travel time surface the two rays that merge on the caustic move

closer in time as the observation point moves out toward the cusp curve. On the cusp curve

these two rays merge to form a single ray with a signal that has a larger amplitude then each

ray individually. Elementary geometrical acoustics predicts only a single arrival once the

cusp curve is crossed, where the rays that merge on the cusp curve abruptly disappear

outside of the cusp curve. In Figs. 16c-g the contributions from the rays that merge on the

cusp curve do not abruptly disappear after the cusp curve is crossed but fade gradually.

This tunneling of the acoustical signal into the snadow region of the TCC can be explained

in terms of a complex ray. The complex ray has a phase that is complex giving an

exponential decay to the contribution of the ray away from the caustic.

The complex phase of the ray can be associated with a complex distance function Oc

associated with the ray. This describes a ray that propagates in a complex space where the

measured signal is due to the intersection of the complex ray path with the real plane 18 .

The existence of the complex ray can be explained using the stationary phase approximation

of the diffraction integral for steady state signals Eq. (13)19. Inside the cusp curve there are

three real and distinct stationary points (rays) of the phase of the diffraction integral defined

by Eqs. 21a and 21b. The contribution of each stationary point has the general form of a

ray

2irk in. g(), (7p-(uv) ' I b(xi,yi) expt ik0(xi,yi;UeVe) + in sgn(H)J, (27)

whre b is a slowly varying amplitude function, H is the Hessian [in two dimensions
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H = (a2 /ax2)(D24/ay2 ) - (a20/axay)21, and the location of the ray in the exit plane is

(xi,yi). When the source point is complex the distance function 0 also becomes complex

0 = or + i4i. This gives the exponential in Eq. (27) of the form exp[ -koi + ik4)r +

(1/4)i7r sgn(H)] which for positive Oi has an exponential decay.

As the observation point moves onto the cusp curve two of the stationary points

merge, and after the cusp curve is crossed these two real stationary points become complex

conjugate stationary points. When the stationary points become complex the distance

function O(xi,Yi,Ue,Ve) becomes complex in Eq. (27) giving a ray that has a complex

source point. Inside the cusp curve the diffraction integral can be considered as a contour

integral in the complex plane with the contour along the real axis. All three of the stationary

phase points are along the real axis while the observation point is inside of or on the cusp

curve. When the cusp curve is crossed, however, the two real stationary points that have

merged move off the real axis and become complex conjugate stationary points. Only one

of the complex stationary phase points contributes to the approximation of the diffraction

integral outside the cusp curve 19 . The integration contour is deformed to pass through the

real stationary point and only one of the complex stationary points. This complex

stationary phase point contribution is in the form of a ray with a complex phase. The

contribution of the complex ray near the cusp curve is strong enough to interfere

destructively with the real ray causing a null in the amplitude of the wavefield but decays

exponentially away from the cusp curve and thus contributes very little to the field far from

the cusp curve.

As the observation point moves horizontally away from the caustic it eventually

crosses into a region where the complex stationary point no longer contributes to the

approximation of the diffraction integral. The region outside the caustic where only the one

real ray contributes to the field is defined by the Stoke's set of the cusp caustic 19 . In Fig.

16a there is only one real ray and no complex rays as the horizontal location is well within

the Stoke's set. The complex rays are most evident in Figs. 16c-g. As the caustic is
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approached from the bright region the the two early rays are seen to merge in time giving a

maximum on the caustic. As the caustic is crossed this maximum starts to decay away

from the caustic as expected for the complex ray that tunnels into the shadow region of the

TCC.
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Figure 16) Time records of received signals collected at consecutive vertical positions of

the receiving transducer along cuts through horizontal positions in the observation plane,

displayed in a waterfall format to show the travel time curve for the vertical cut. The

vertical positions in the displayed travel time curves correspond to the vertical positions in

the observation plane at which that time record was collected. Relative to the horizontal

position of the cusp point the horizontal positions are u - uc = - 27mm, 0.0, 27mm,

54mm, 8 1mm, 108mm, 135mm, the vertical positions relative to the vertical position of

the cusp point are v - vc = -108mm to 108mm by 5.4mm steps. Cut (a) shows the smooth

travel time curve expected from Fig. 14a outside the cusp curve. The horizontal position of

cut (b) is approximately on the cusp point and the cusp curve is slightly pointed. Cuts (c)-

(g) are inside the cusp curve and show the increasing width of the tail as the horizontal

positions of the cuts move further inside the cusp curve.
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C) THE IMAGED TRAVEL TIME CURVES FOR A WAVEFRONT THAT

FORMS A TRANSVERSE CUSP CAUSTIC, COLLECTED USING A

SCANNING SOURCE AND FIXED RECEIVER

Experiments were performed to image the travel time surface produced by scanning

the acoustical source and holding the receiver fixed in the observation plane. In the

experimental setup used, this amounted to reversing the roles of the source and receiver

used to collect the data shown in Fig. 16. Through reciprocity it would be expected that the

travel time surface imaged by scanning the source in this manner would be the same as that

shown in Fig. 16. The results, though reciprocal to those shown in Fig. 16, still

demonstrate that the travel time surface and similarly the TCC can be imaged by scanning a

,ource and holding the receiver fixed. Figure 17 shows the cuts through the travel time

surface obtained by scanning the source. Each of the horizontal positions of the cuts now

refers to the horizontal location of the source as this controls the horizontal location of the

cusp curve in the observation plane. The vertical location of each time trace is also

referenced to the vertical position of the source as this moves the cusp curve up or down in

the observation plane. The qualitative shape of each of the cuts in Fig. 17 is the same as

the corresponding cut in Fig. 16. Comparison of the cuts in Fig. 17 with those in Fig. 16

and the calculated cuts in Fig. 14 show that the TCC in the observation plane can be

mapped by scanning either the source or the receiver.

The experimental parameters used when the source was scanned were the same as

those for the experiments when the receiver was scanned with the exception of the reversal

of the roles of (u, v, z) and (us, vs, zs). This does not effect the calculations shown in Fig.

14 as the dependence of the location of the rays in the exit plane is on Ue and Ve. The only

change in the calculation due to switching the source and receiver in the above manner

would be to exchange r and rs where now r will be fixed and rs will change at each position

of the source in the scan. Thus the calculations in Fig. 14 can be used to compare the

theoretical travel time surface to the experimental surface shown in Fig. 17 for the scanned
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source. When this comparison was done it showed that the smooth shape of the calculated

travel time curve in Fig. 14a matches well the shape of the experimental travel time curve

16a, with all the calculated relative arrival times falling within 1t~s of the measured arrival

times. The wings in Figs. 17b and 16c also displayed the agreement seen in Fig. 17a with

the calculated travel time curves. In Figs. 17d- 16f the tail of the travel time curves agreed

well with the tails of the calculated curves in size and shape. The relative arrival times of

the signals forming the tail were within the ±l4s error seen in the comparisons of the rest

of the data to the theory.
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Figure 17) Time records of received signals collected at consecutive vertical positions of

the source transducer along cuts through horizontal positions in the source plane, displayed

in a waterfall format to show the travel time curve for the vertical CUL The vertical

positions in the displayed travel time curves correspond to the vertical positions in the

source plane at which that time records were collected. Relative to the horizontal position

of the cusp point the horizontal positions are u - Uc = - 27mm, 0.0, 27mm, 54mm,

8 lmm, 108mm, 135mm, the vertical positions relative to the vertical position of the cusp

point are v - vc = -108mm to 108mm by 5.4mm steps. Cut (a) shows the smooth travel

time curve expected from Fig. 14a outside the cusp curve. The horizontal position of cut

(b) is approximately on the cusp point and the cusp curve is slightly pointed. Cuts (c)-(g)

are inside the cusp curve and show the increasing width of the tail as the horizontal

positions of the cuts move further inside the cusp curve. These travel time curves show

that the transverse cusp caustic can be observed by holding the receiver fixed and scanning

the source.
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3.5 DISCUSSION OF THE RAY EVOLUTION AND ITS SENSITIVITY To

THE SURFACE PARAMETERS

The imoatoits of th, rays in the exit piaie ,:an give some insight into how the iocai

wavefront shape in the exit plane forms the travel time surface in the observation plane.

Figure 18a shows the locations of the rays in the exit plane associated with the travel time

cut in Fig. 18b corresponding to the horizontal position of cut e in Figs. 13e - 17e. When

the observation point is below the cusp curve, there is only one real ray path from the exit

plane passing through the observation point. For example, there is only one ray path that

passes through the point marked a in Fig. 18b originating in the exit plane at point a in Fig.

18a. Moving up the vertical cut from below the cusp curve in the observation plane the

single arrivals are associated with the ray locations from the branch of the wavefront in the

exit plane marked by the arrow 1. The arrow gives the general direction of migration for

the rays from branch 1 of the wavefront in the exit plane as the observation point moves

up in to the cusp curve. When the observation point reaches the cusp curve the two rays

that merge on the lower branch of the cusp curve appear in the exit plane at the point

marked "lower cusp curve". The migration of these two rays in the exit plane as the

observation point moves through consecutive vertical locations up th: :ugh the cusp curve

is shown by the arrows maiked 2 and 3 along branches 2 and 3 of the wavefront in the

exit plane. When the observation point is on the symmetry axis rays 1 and 2 from the

wavefront are located symmetrically about the x axis while the ray 3 is located on the x

axis. Crossing the x axis and moving up toward the upper half of the cusp curve the

original ray (ray 1) merges with ray 3 at the point marked "upper cusp curve" in Fig. 18a

which correspond to the single arrival marked "upper cusp curve" in Fig. 18b. After

crossing the upper half of the cusp curve only ray 2 is left moving down toward the lower

left comer in Fig. 18a. The three branches of the wavefront in Fig. 18a correspond to the

branches of the travel time surface in Fig. 18b.
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Figure 18) (a) The location in the exit plane of rays to the observation plane for the travel

time cut corresponding to Fig. 15e. Rays to the vertical cut in the observation plane

originate on three branches of the wavefront in the exit plane labeled 1, 2, and 3 in (a).

The arrows indicate the migration of the rays along the branches as the vertical position in

the observation plane moves up through the cusp curve. (b) Shows the corresponding

travel time curve with the signals arriving along the three branches of the travel time curve

associated with the locations of the rays from the three branches of the wavefront in the exit

plane marked 1, 2. and 3. The arrows label the signal arrivals associated with the

migrating rays in (a) indicating where the associated signals came from in the exit plane.

As a guide there are four rays in (a) and the locations on the travel time curve of signals

associated with these rays in (b) labeled a-d.
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The rays located in the exit plane in Fig. 18a are normal to the wavefront at those

points. The arrival times associated with these rays in the observation plane provide a

picture of the local shape ot the wavetront after propagating from the exit plane to the

region containing the observation plane. In the exit plane the wavefront has the general

shape given by Eq. (10) and shown in Fig. 8. After propagating to the region containing

the observation plane the wavefront has the general shape of the appropriate singular

surface described by the ray condition, Eqs. (20a) and (20b), and 1/c - t = 0. For the cusp

catastrophe this is a surface given by the swallow tail caustic Fig. 4c. In Fig. 18a the shape

of the wavefront in the exit plane is that of Fig. 8. After propagation to the observation

plane the branch of the wavefront represented by 1 in 17a has folded over to 1 in 17b,

branch 2 in 17a to 2 in 17b and 3 in 17a to 3 in 17b, where the arrows relate positions in

the exit plane to positions in the observation plane. Figure !8b represents a slice through

the wavefront in space after propagation to the region containing the observation plane and

has the same general shape as a cut through the swallow tail caustic in Fig. 4c with C3 > 0.

The ray locations for the TCC described above produce a caustic that opens along

the positive u direction in the observation plane. In the three ray region of the caustic, rays

from branch 3 of of the wavefront will be the first to arrive in the observation plane at a

given vertical position. The important parameter in determining the arrival orientation of

the signals propagating along the rays in Fig. 18 is bl' = 1/(2ze) - 2hi. Parameter a2' only

affects the direction along which the cusp curve opens and a change in sign is effectively a

reflection of the wavefront through the vertical axis. Figure 18 shows the general ray

locations for a wavefront with a2' > 0 and bI' > 0. When h1 is negative b1' will always be

positive and the caustic surface, Fig. 3, will be well behaved. However, when hI is

positive there will be combinations of source and receiver distances that give

bl'= l/( 2ze) - 2hl = 0. As bl' goes to zero the opening rate of the caustic diverges. The

position of branch 3 in the exit plane in Fig. 18a moves off to x = +oo while branch 3 in

the observation plane goes to t = -- as bl' -* 0 from the positive side. When bl' = 0 t
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Figure 19) Calculated travel time curves at an effective horizontal position relative to the

cusp point of Ue -Uec = 0.1191, with bl' = 0.01, 0.001, 0.0001, 0.00001, -0.00001,

-0.0001, -0.001, -0.01 in a-j. As the value of bl' goes to zero from the positive side the

early arrival in the tail moves off to t = -oo while the two later arrivals go to t = [Ueb3'/a2' +

-Ve(Ue/a2')l/ 21/c. After bl' goes through zero and becomes negative :he travel time curve

giving the outer boundary of the tail moves in from t = o while the wings unfold from the

limit given above. The orientation in time of the arrival of signals when bl' is negative is

opposite that for positive bl'.
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here are only two real finite solutions, corresponding to branches 1 and 2 in Fig. 18a, for

the location of the rays in the exit plane from Eqs. (21a) and (21b)

-a2y _Ue=0, = 2 _ + a (28a)axi 2Y e=0 *Ya2

- a (28b)aO yi a'ib' Ve0 x-a2' V Ue - a2'

At the point where bl' = 0 there are only two arrival times associated with signals

propagating along rays from the exit plane to the observation plane.

Figure 19 shows the evolution of the travel time cut as bl' goes from 0.01 to

-0.01. As bl' --* 0 from the positive side, Figs. 19a - 19e, the arrival time of the rays due

to the reduced distance function of the wdvefront, O(x,y;Ue,Ve), goes over to just two finite

arrival times. The two branches of the wavefront that form the wings (1 and 2 in Fig. 18)

of the travel time cut remain finite while branch 3 moves to t = -00 at bl' = 0. As bl'

becomes more negative branch 3 moves in from t = +oo to form the tail of the swallow tail

with branches 1 and 2 of the wavefront Figs. 19f - 19j.

Figure 20 shows the location of the rays in th xit plane and the travel time cut for

the same horizontal position in the observation plane relative to the cusp curve as in Fig.

18, but with a2' > 0 and bl' = -Ibj'I. Since a2' and Ibl'I are the same in both Figs. 18 and

19 the cusp curve and diffraction catastrophe are also the same. The only difference is in

the sign of bI'. Note that the orientation of the travel time cut, with respect to time, in Fig.

20 is the opposite of that of Fig. 18. The orientation of the ray paths from the exit plane

that pass through points in the observation plane is also different. As the observation point

moves up from below the cusp curve, the single arrival below the cusp curve now comes

from the bottom half of the exit plane branch 1 of the wavefront in Fig. 20. The rays that

merge on the lower half of the cusp curve now originate in the upper half of the exit plane,

branches 2 and 3 in Fig. 20. Moving up through the cusp curve ray 3 moves down from
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the top half of the exit plane and the signal propagating along this ray is always the last to

arrive in the observation plane. Ray 1 now moves up to the left from the bottom in Fig. 20

and ray 2 moves up and to the right. Not only is the orientation with respect to time of the

travel time cut different but the location of the rays in the exit plane is also changed.
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Figure 20) (a) The location in the exit plane of rays to the observation plane for bl' having

the opposite sign as in Fig. 18. Rays to the vertical cut in the observation plane originate

on three branches of the wavefront in the exit plane labeled 1, 2, and 3 in (a). The

arrows indicate the migration of the rays along the branches as the vertical position in the

observation plane moves up through the cusp curve. Note that the migration of the rays in

the exit plane is counter clockwise which is opposite the direction of migration seen in Fig.

18a. (b) Shows the corresponding travel time curve with the signals arriving along the

three branches of the travel time curve associated with the locations of the rays from the

three branches of the wavefront in the exit plane marked 1, 2. and 3. The arrows label

the signal arrivals associated with the migrating rays in (a) indicating where the associated

signals came from in the exit plane. As a guide there are four rays in (a) and the locations

on the travel time curve of signals associated with these rays in (b) labeled a-d.
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3.6 CONCLUSION

Short pulsed source signals were used to study the impulse characteristics of the

wavefront that produces a TCC in a distant transverse observation plane. The travel time

surface of a wavefront that forms a caustic displays the merging and disappearance of rays

as an observation point crosses a caustic from the bright side to the shadow side. For the

cuspoid catastrophes the travel time surfaces are described by the caustic surface of the next

higher codimension catastrophe7. For the cusp catastrophe (for example the longitudinal

cusp caustic) this means that the form of the travel time surface is the swallow tail caustic

surface. The TCC, though produced by a wavefront curved in two dimensions, has the

properties of the longitudinal cusp caustic. The expected travel time surface is then that of a

swallow tail caustic. Calculations of the expected travel time surface from the distance

function of the TCC display the expected swallow tail form superposed on a slowly

varying contribution of the foi oc/c where 00 is defined in Eq. (25).

Experiments to image the travel time surface were conducted using two methods for

mapping the travel time surface in an observation plane. In the first method the travel time

surface in the observation plane was mapped by holding the source fixed and scanning the

receiver, while in the second the receiver was held fixed and the source scanned. The

travel time surfaces imaged (Fig. 16) showed general agreement with the shapes of the

calculated surfaces (Fig. 14). There were contributions evident of the form 0/c in Eq. (23)

giving the expected swallow tail caustic surface and a slowly varying form 0o/c from Eq.

(24). To compare the shapes of calculated travel time surfaces to the experimentally

measured surfaces, the travel time surface was calculated using the parameters defined by

the experiment. These calculations were plotted using the same length and scale for the Ve

and t axes as was used in the plots of the experimental data. With this format for

displaying the data and calculations, the calculated travel time curves could be overlain on

the experimental curves to compare the two. There were no scaling parameters used in the
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comparison of the data and theory, only a constant offset in the initial arrival time was

allowed to vary. The parameters used in the calculation were all determined by the

measured surface parameters hm and the experimental set up. When the calculated curves

were overlain with the experimental curves they showed good qualitative agreement in the

relative arrival times of the signals forming the travel time surfaces with a maximum

difference of ±1 pts. The comparisons, done for travel time surfaces measured using both

the scanning source and the scanning receiver, showed that the measured travel time

surfaces had the expected form for a cusp caustic: the swallow tail caustic form with a

slowly varying contribution of the form 0o/c due to the source.

In time traces that were just outside the cusp curve a tunneling ray was evident in

the region inside the Stoke's set. This tunneling ray decays away from the cusp curve

rapidly, agreeing with the expected exponential decay of this ray away from the cusp curve.

The travel time surface was imaged using both a scanning receiver and a scanning source.

This is possible due to the symmetry between the source and receiver coordinates in the

description of the reflection problem. Though the experimental method used to produce the

images of the travel time surface by scanning the source produced a reciprocal picture of the

images produced by scanning the receiver; they none the less showed that the travel time

surface and thus the diffraction catastrophe may be mapped with a moving source and a

stationary receiver. The agreement between the travel time curves measured using the

scanning source and the calculated travel time curves was as good as the agreement for the

scanning receiver affirming the symmetry in the source and receiver coordinates of the

theory describing the TCC.

The orientation with respect to time of the travel time surface is dependent on the

parameter bl' of the distance function. For bl' > 0 the tail of the surface arrives first,

with the ray from near the symmetry axis of the wavefront, branch 3 in Fig. (17), arriving

earliest. When bl' < 0 the tail arrives last and the ray from the center of the wavefront,

branch 3 in Fig. (19), is the last arrival. In the frequency domain these two wavefronts
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would produce the same diffraction catastrophe with only an offset in the cusp point of the

cusp curve. In the time domain, the added dimension of time shows the difference between

the two wavefronts by the orientation with respect to time of the travel time surfaces. The

added dimension of time provides extra information that can be useful for classifying the

wavefronts that produce caustics. The travel time surface provides a picture of the local

shape of the wavefront after propagation from the exit plane to the region containing the

observation plane.
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APPENDIX A
THE CALCULATION OF THE LOCATION OF THE RAYS IN THE EXIT

PLANE AND THE TRAVEL TIME SURFACE

The location of the rays in the exit plane is given by the solutions of Eqs. (21a) and

(21b). Equation (21a) may be solved for xi

Ue - a2'y(
xij 2b'' (Al)

where

Ue = + , (A2)Z Zs

and bl' and a2' are defined in Sec. I. Equation (Al) may be used in Eq. (21b) to get a

cubic equation in yj

3 ( .2b 'b3' b ' -oYi - Yi (Ue -f-, )Ve --22 = 0, (A3)
y~Ja 2 '\ a 2  e a 2

-(3

where

vVs
Ve = + (A4)Z Zs

Equation (A3) can be rewritten as

y -yi + 2V= 0, (A5)

where

"Ue -Uec (A6)a2' a2'

d= Ve 2a2'2  (A7)

Uec 2b'b3 (A8)

There will be three solutions to Eq. (A5). The three solutions to a cubic equation of the

form of Eq. (A5) are20
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yl=A +B, Y2 2 + 2 - 3-'

A+BA-

Y 2 32 - - (A9a,b,c)

where

A= V +\/V2+ 2 (A10)

and

B=- V + -qV2 + . (All)

There will be three real and unequal solutions for yi when V2 + 03/27 < 0 this corresponds

to an observation point inside the caustic. There are three real solutions with two of the

solutions equal when V2 + 0j3/27 = 0 this corresponds to an observation point on the

caustic. When V2 + 03/27 > 0 there is one real solution and two complex conjugate

solutions corresponding to an observation point outside the caustic.

A FORTRAN program was written to solve for the locations of rays in the exit

plane. Since the solutions of Eqs. (A3) and (A5) depend on the location of Ue relative to

the cusp point Uec the initial value of U in the program was U = Ue - Uec. The vertical

position of the cusp point was taken to be zero in the observation plane so there was no

need to alter Ve relative to the cusp point to solve for the rays. The cube roots in Eqs.

(A 10) and (A11) were calculated by simply raising the argument -7 + (72 + 03/27)1/2 to

the 1/3 power. There were complications as there are three different cube roots of the

argument. The difficulty arose when the real part of the argument was negative and the

root obtained was not along the proper branch cut of the cuhe root. A complex number can

be expressed as z = Zr + izi = re iO where r =(Zr 2 + zi2 ) 1/2 is the magnitude of the complex

number and 0 is the phase 4 = tan-I(zlzr). The cube root of z is then
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3 3 . 3Fz, zr +iz = 'frexp[i3 (A 12)

where the three roots of z are due to the phase 0 being multivalued ( can be 4, c + 2r,

0 + 41r, ..). Unique values of zl/3 are obtained for 0 = 0, 0 +2nt, and d + 4nt. When

z = -1 there are three cube roots: -1, cos(nt/3) + i sin(it/3), or cos(5t/3) + i sin(57r/3) =

cos(nr/3) - i sin(ir/3). When (-1)1/3 is computed using standard VMS Fortran by raising

the complex variable z = -1 to the 1/3 power it returns cos(t/3) + i sin(nr/3) which is the

result if z = -1 = le i c however the desired root is (-1)1/3 = -1. This occurs because VMS

Fortran assumes phases between -7r/4 and r/4 thus all the results are along the positive real

axis. As an example for z = -1 + i, the computer gives a phase of 0 = 0 radians. In order

to assure cube roots along the negative real axis were preserved, the algorithm developed

used (z) 1/3 = -1 (-z)1/ 3 when the real part of z was negative.

To find the arrival time of each ray, Eq. (24) was used with c = 0.148 cm/gs, the

speed of sound for water at 18* C. The initial values of Ue and Ve used to find xi and yi

were split into u and v using Eqs. (A2) and (A4) and a given source location. These values

of u, v, us, and vs were then used to find the source and receiver distances from the origin

in the exit plane

rs= s /z 2 + us2 + v s , (A12)

and

r Vz2 + u2 + v2 , (A13)

respectively. This provided the slowly varying term 00 in Eq. (25). The ray locations

(xi,yi) in the exit plane were used in O(xi,Yi,Ue,Ve) from Eq. (14) to calculate the travel

time surface contribution due to the shape of the reflecting surface. The two travel time

contributions could then be plotted separately as in Figs. 7a and 6b or summed to give the

actual travel time surface as in Fig. 7c.
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CHAPTER FOUR

SHAPES OF TRANSIENT ECHOES NEAR TRANSVERSE CUSP

CAUSTICS PRODUCED IN REFLECTIONS FROM CURVED SURFACES

4.1 INTRODUCTION, REVIEW, AND OVERVIEW

As discussed in Chapters 2 and 3, transverse cusp caustic is formed by the

reflection of sound from a surface with the local shape given by Eq. (9) below. In the

vicinity of the caustic, the temporal shape of the signals arriving in the observation plane is

seen to depend on position. This is evident from inspection of the data given in Chapter 3.

The temporal shape of the reflected signals is either that of the incident signal or a distorted

shape due to touching a caustic prior to arrival in the observation plane. The theoretical

basis of this is discussed below. The principal objective of Chapter 4 is to identify which

echoes have touched caustics and which echoes have not by examining their shape. While

the emphasis is on reflection from a surface having the shape of Eq. (9), consideration is

given to more general aspects of the problem of classifying transient arrivals.

When a ray touches a caustic (ie. is tangent to the curve describing the caustic not

simply crossing the caustic) high frequency components of the signal propagating along the

ray, after passing the point where the ray path touches the caustic, undergo a 7E/2 phase

advance 1. The phase advance affects each high frequency component of a signal that has

passed a caustic thus distorting the shape of the signal. After touching the caustic, the

shape of the distorted signal is given approximately by the Hilbert transform of the shape of

the signal prior to touching the caustic. For a transient signal the Hilbert transform shape

will contain an infinite precursor giving the distorted signal an arrival time 2,3,4,5 of t = .

Though the precursor is not eliminated, it may be reduced to finite t by consideration of the

frequency dependence of the phase advance due to touching the caustic 2.

Prior to discussing the transient formulation some relevant aspects of catastrophe

theory will be reviewed. Structurally stable caustics have been organized and classified by
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catastrophe theory according to the corank and codimension of an associated general

distance function in the phase of a diffraction integral c1(aC) 3,6,7. The diffraction integral

has the general form
00

P(C) = fb(a,C)exp[ik 4(a,C)] da where the ai are state variables (ray parameters in the
-00

ray approximation), the Ci are controls parameters (these could be characteristics of the

media or coordinates in an observation plane), and b(a,C) is a slowly varying amplitude

function 3. The codimension of a caustic K is the number of control parameters Ci needed

to describe the caustic. The corank of a caustic N is the number of state variable ai needed

to describe the most singular section of the catastrophe associated with the caustic. The

caustic itself is defined by the locus of points where the gradient map from state space to

parameter space is singular 3'6 , where the ray condition a)c/aa = 0 and a2 /b/aa2 = 0.

The cuspoid caustics are the caustics with corank one (they only have one state

variable). The distance function of a cuspoid caustic has the general form with a = x of

O(x,C) = xK+2/(K+2) - CKxK/K - CKIxK-I/(K-1) - ... - Cix, where K = 0, 1, 2,

is the codimension of the caustic. The longitudinal cusp caustic is a cuspoid caustic of

codimension two that opens roughly parallel to the direction of propagation of the

wavefront, as seen in Figs. 21 and 22 below. This caustic, also known as the axial cusp

caustic, is formed by the smooth joining of two fold caustics (cuspoid caustics of

codimension one) coming together at an ar~te 8. The longitudinal cusp caustic, near the

arte, has the general form given by Eq. (8) below with Dr replaced by DL, a longitudinal

opening rate with units of 1/distance. Ue and Uec replaced by z and zcp, the distance from

the exit plane to the observation point and arete respectively, and V replaced by the

distance x, the normal offset from the symmetry axis of the caustic. The distance function

of the longitudinal cusp caustic has the general form D(x,w) = x4/4 - w2x 2/2 - wix, and

the diffraction catastrophe decorating the caustic is given by the Pearcey function P(w2,wl)

where 9 w2 - z and wl - u.
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A transverse cusp caustic (TCC), Fig. 6, is a cusp caustic, described by Eq. (8)

below, opening roughly transverse to the direction of propagation10 . Though the distance

function of this caustic has two state variables [a = (x,y)], the TCC has all the properties in

parameter space of the cuspoid caustic of codimension two (a longitudinal cusp caustic).

Like the longitudinal cusp caustic the diffraction catastrophe that decorates the TCC is given

by the Pearcey function10 where now w2 - u and w I - v. The travel time surface of the

TCC has the general form of the singular surface of the next higher codimension

catastrophe the swallow tail catastrophe shown in Fig. 8. The signals propagating along

the rays forming the TCC also should have the same arrival sequence as the signals that

form the longitudinal cusp caustic. The number of ray paths through an observation point

that have touched the caustic surface should depend on the orientation of the caustic surface

relative to the locations of the rays in the exit plane in a manner similar to that of the

longitudinal cusp caustic.

Chapter 4 gives a brief heuristic explanation of the it/2 phase advance associated

with rays that touch caustics in Sec. 2.A. In 2.B the effect of the phase advance on the

shape of the signal is discussed. Section 3 specializes to the rays that form the TCC with a

brief review of the caustic and travel time surfaces in Sec. 3.A. In Sec. 3.B some data

showing the sequence of signal arrivals when bl' and a2', as defined in 3.A, are greater

then zero is analyzed. In Sec. 4 the relation of the parameters describing the wavefront that

forms a TCC to the sequence of the signals arriving in the observation plane is discussed.

Section 5 discusses the arrivals shown in Sec. 3.B as they relate to the expected arrivals

given by Sec. 3.A and the sequence of arrivals for the longitudinal cusp caustic.
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4.2 A REVIEW OF THE EFFECT ON SIGNALS PROPAGATING ALONG

RAYS THAT TOUCH CAUSTICS AND THE HILBERT TRANSFORM

A. A HEURISTIC EXPLANATION OF THE PHASE CHANGE USING

RAY TUBES

The t/2 phase advance of a ray that touches a caustic can be explained by looking at

the behavior of a ray tube that touches a caustic. A ray tube consists of all the rays that

pass through a small surface area transverse to the ray paths at xo as shown in Fig. 1.

Moving along the ray paths, the cross-sectional area of the ray tube will increase or

decrease depending on the curvature of the wavefront. For a wavefront that is curved in

two directions there will be two principle radii P 1 and P2 which describe the curvature of

the wavefront. The time dependence used in the discussion below is exp(-icot). In a small

region around a given point, the wavefront shape may be approximated by8 W(x,y) =

constant - x2/2pI - y2/2p2, where the pi are negative (for a concave surface along the

direction of propagation) positive (for a convex surface) or of opposite sign (for a saddle

shaped surface). Figure 2 shows a wavefront moving in the direction of A. For the

wavefront shown in Fig. 2 the principle radius is negative at x0 , goes to zero on the caustic

at xc, and is positive at x. The bounding rays of the ray tube, labeled I and 2, exchange

positions on each side of the caustic due to the change in the curvature of the wavefront.

The amplitude along a ray tube is inversely proportional to the square root of the

cross sectional area of the tube. If the amplitude at x0 = (xo,yo) is given by the complex

pressure P(xo), then at x = (x,y) the amplitude is given by 8

A(x)
P(x) = P(x0) A (xo)

where A(x) is the cross sectional area of the ray tube at x. The dependence of the

amplitude on the area of the ray tube may also be described in terms of the principle radii of

the wavefront at a given point in space. In terms of the principle radii the amplitude at x is8
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P(x) = P(xo) PIP2 (2)(q+p1)(q+p2) (2

where q = Ix - x0 is the distance along the ray tube from xo to x and p 1 and P2 are the

principle radii at xo. The quantities q + p1 and q + P2 in Eq. (2) are the new principle radii

of the wavefront after propagation from xo to x.

A caustic is formed when one of the local principle radii (q + pi) goes to zero, as

for example, when pI<0 and q = Ipl1. From Eq. (2), the amplitude of the signal

propagating along a ray tube diverges where the ray tube touches a caustic. Provided q -

P2 at the same point, there will be a change in the sign of the ratio of the product of the

principle curvatures (P IP2)/[(q+P1)(q+P2)] . This sign change gives a (-1)1/2 factor to

P(x) due simply to touching the caustic. This factor can be represented by a phase change

of n/2 for positive frequencies as exp[i7r/2] = i = (-1)12. After touching the caustic the

phase of the signal is exp[ i (kq + 7E/2)], thus the signal is phase advanced by r/2.
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x

Ray tube

~Xo

ig-ac 1) A +,, '--c tha: cz ,tains all the rays entering normal to the cross sectional area of

the tube at xo and leaving normal to the cross sectional area of the tube at x. The amplitude

of the signal propagating along the ray tube at any point along the tube is proportional to the

cross sectional area of the tube at that point.
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S X

P < 0 caustic curve

Figure 2) The change in the curvature of the wavefront after touching a caustic is shown at

points xo and x. At xo the ray tube bounded by rays I and 2 is travelling along the

diection given by the unit vector towards the caustic with the principle radius Po < 0. At

the caustic, xc, both the area of the ray tube and the principle radius go to zero. After

touching the caustic at the point k- the positions of the rays I and 2 switch and the principle

radius at x is p > 0.
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B.EFFECT OF THE PHASE ADVANCE ON THE PULSE SHAPE

A transient signal propagating along a ray path that has touched a caustic will

contain many frequency components each of which, in the high frequency approximation,

is phase advanced by ir/2. The phase advance produced by touching the caustic changes

the shape of a transient signal. The shape of the phase advanced signal can be found by

examining the effect of the phase advance on the Fourier transform of the signal, where for

an initial signal with the shape s(t)

0

Sf S(t) e- i Ot dt, (3)

is the Fourier transform of s(t). For real s(E), 1(-o) = [s(co)]* where the '*' means to take

the complex conjugate. The phase advanced signal is represented by h(t) and it's Fourier

transform

00

h~0)- fh(t) e- iGmt dt. (4)
2n -00

The change in the pulse shape occurs due to the phase advance of each spectral component

of the pulse. Thus the Fourier transforms of the initial and phase advanced signals are

related by

h(o) = s(o) exp[if sgn(co)], (5)

where sgn(co) = co/lol = ±1. The sgn(w) factor is necessary to assuring that the phase of

tie negative frequency components is phase advanced by adding a negative 7r/2 to the

phase. The sgn(o) term also assures that h(t) is real by forcing h(0) = h

Using Eqs. (3) and (5) and the inverse Fourier transform of h(co), the phase

advanced signal is
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00

00

h(t) 1 (o) ei(t dfo fexp[if- sgn(o)] S(co) ei(Ot dco

00 00

2 do fexp[iT sgn(o)] s(t') eiO(t-t') dt'. (6)

Equation (6) may be rewritten using exp[i(7t/2)sgn(o)] = i for co >_ 0 and -i for w) < 0

00 DO

h(t) fdc0 fs(t') sin[w(t' - t)] dt'. (7)
-C -00-00

Equation (7) is called the allied integral of the Fourier integral and h(t) = H[s(t)] is the

Hilbert transform (HT) of s(t) 2,51 1.12. The HT is commonly written in terms of the

principal 3,4.5,7,9,11,12 of convolution of the source signal with the impulse response of a

caustic given by -1/nt. Some examples of HT pairs are given in Table I. The HT is said to

be skew-reciprocal 12 in that if H[s(t)] = h(t) then H[h(t)] = -s(t). Performing two

consecutive HT's on a function corresponds to a it phase advance of the function giving -

I s(t) while four consecutive HT's corresponds to a 271 phase advance and the function is

unchanged.

From Eq. (5) it is possible to calculate the HT of a sampled pulse s(t) by computing

the Fourier transform s(wo) multiplying it by i sgn(o) and inverting the transform. A

computer program was written to calculate the HT's of digitized time signals. The IMSL

Fast Fourier Transform (FFT) routines were used. Table II shows a schematic of how the

HT was calculated. An input signal s(t) was FFT'd giving 1(w). The first half of s(o) was

multiplied by i and the second half by -i then inverse FFT'd to arrive at the HT of the

input signal. The second half of the frequency spectrum represents negative frequencies

thus the multiplication factor of -i to get the negative frequency components of the phase

advanced spectrum. The inverse FFT of the phase advanced frequency spectrum gives the

temporal form of the signal that has been phase advanced by a factor of 7r/2.



159

Table I Some functions [s(t)I and their Hilbert transforms [h(t)].

s(t) h(t)

cos(t) -sin(t)
1 t

I +t2  I +t2

expl~iat], a > 0 ex1la 2
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Table The algorithm used to calculate the Hilbert transforms of digitized time traces.

(input signal)

s(nAt) n=1,N---

FFT[s(nAt)] = s(nAo) --

NN
for n= 1, - h(nAco) = is(nAo), for n-- ! + I,N h(nAc0) = -is(nAw)--

1 FFThl[h(nAco)] = h(nAt)

(output signal)
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a

b

Figure 3)(a) A continuous sine wave of frequency 64, sin(27rt/64). (b) The Hilbert

transform of (a). Since there is only one frequency component in (a) the Hilbert transform

can be written down directly as sin(2itt/64 + x/2) = cos(21tt/64). The signal in 'a) was

used as a test for the Hilbert transform algorithm used to calculate the Hilbert transforms of

digitized time signals.
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Figure 3 shows a trial input signal used in the computer program and it's resulting

HT. In Fig. 3a s(t) = sin(2nt/64) and was used as a test of the algorithm used for

calculating HT's. From Table I the HT of sin(t) can be found using the skew-reciprocal

relationship between HT pairs. The HT of sin(t) is H[sin(t)] = H[-H[cos(t)] =

-H[H[cos(t)I] = - -cos(t) = cos(t), as expected since there is only one frequency

component and thus H[sin(t)] = sin(t + 7E/2) = cos(t). Figure 3b shows the HT of

sin(27tt/64), H[sin(2tt/64)] = cos(27tt/64), confirming that the HT algorithm was working

correctly for the case considered.

Figure 4 shows the HT, computed by the above algorithm, of a single cycle sine

burst of frequency f = 1/64 Hz. The dashed line is the input signal s(t) and the solid line

the HT, h(t) = H[s(t)]. Cron and Nuttall 13 analytically calculate the HT of a similar pulse.

The results they obtain are the same for a 7r/2 phase advance with the h(t) shape being

symmetric about the center of the s(t) shape and having the precursor and tail seen in Fig.

4. Consider that either s(t) or h(t) represents the signal propagating along a ray that

originates on a hypothetical wavefront W in a uniform medium. If the ray path does not

touch a caustic, the signal at the observation point will arrive with the shape shown by the

dashed line in Fig. 4. The arrival time will be given by the distance along the ray path from

:he wavefront to the observation point, q, divided by the speed of sound, c, t = qc. If,

however, W forms a caustic before arriving at the observation point and the ray path to the

observation point touches this caustic the signal propagating along the ray path will arrive

wit) the approximate shape given by solid curve in Fig. 4. Though this signal has travelled

geometrically the same distance as the signal that does not touch the caustic, components of

it appe,.rs to arrives at the observation point earlier then the geometrically expected arrival

time.

For a signal to be causal it can not arrive at an observation point prior to the time it

takes to propagate from the point of origin of the signal to the observation point. The

precursor seen in Fig. A arrives at the observation point earlier then t = q/c. If the signal is
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precursor i!

II

s(t)
geometricly
expected h(t)
arrival time

Figure 4) A single cycle sine burst s(t) (dashed curve) and its Hilbert transform h(t) (solid

curve). The sine burst is a causal signal as it turns on abruptly at the arrival time of the ray.

The Hilbert transform of s(t), h(t), is a noncausal pulse due to the precursor, shown in the

figure, that arrives ahead of the expected arrival time of the ray.
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assumed to have traveled along the ray path a distance q then the precursor in Fig. 4 is not

causal. For an impulse signal the precursor seen in Fig. 4 would extend to 3 t = --0.

Apparently noncausal precursors have been discussed in some vary different manners,

though the final resolution with causality is perhaps most clearly seen in the analysis given

by Hill 2 reviewed below.

Tolstoy 4 and Pierce 14 use the example of plane waves totally reflected by a half-

space of higher sound speed. The totally reflected ray undergoes a ir/2 phase advance ai.d

has the Hilbert transform shape of the incident ray and thus the precursor. The infinite

precursor in this situation is associated with a surface wave that travels in the higher sound

speed media. The source is assumed to be at infinity so that plane waves are assumed.

Tolstoy generalizes this explanation of the precursor to the caustic observed in the reflection

of sound by a stratified half-space where the speed of sound increases uniformly with

depth. The turning point of a stratified medium is analogous to the boundary between two

uniform media, in that the turning point is the apparent depth at which plane waves incident

past the critical angle for total reflection are totally reflected. When a point source is locate

above a stratified half-space a caustic is formed in the half-space by rays that are reflected

back out of the half-space. Tolstoy shows that in the limit of the source point moving away

to o (the source signal becoming plane waves) the caustic formed in the half-space goes

over to the turning point of the stratified media. Then the explanation given for the

precursor is the same as that for the reflection of plane waves from a half-space given

above.

To deal with the apparent noncausal nature of the phase advanced pulses at caustics,

Brown and Tappert have developed a set of rules that are supposed to govern the formation

of caustics by wavefronts that are not aperture limited 7.15. To satisfy causality Brown and

Tappert require that all noncausal signals be preceded by a causal signal and that the

noncausal precursor not extend beyond the earlier causal arrival. Brown and Tappert state

that for a general wavefront. defined by a function of position along a single direction
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transverse to the direction of propagation (Figs. 21 and 22 are examples), to be causal it

must be organized in terms of cuspoid caustics of even codimension. This requirement

means that a fold caustic (K=1) must always be part of at least a cusp caustic (K=2), and a

swallow tail caustic (K=3) must be at least part of a butterfly caustic (K=4). By requiring

that two dimensional wavefronts, as described above, be organized in terms of cuspoid

caustics with K even, there will always be an odd number of ray paths through an

observation point. The order by which signals propagating along these ray paths can arrive

at the observation point is further restricted. If the causal shape of the initial signal is given

by s(t) and the HT noncausal signal shape is h(t), then Brown and Tappert require:

(I) The total number of arrivals N is odd. If N = 1 then this arrival must be a causal s(t)

type arrival. When N > 1 there must be 1 more s(t) type arrival then h(t) type arrivals.

(II) When N > 1 each h(t) type arrival must be preceded by two s(t) type arrivals.

(III) When N > I the last arrival must an h(t) type arrival.

For caustics formed in three space dimensions, there are similar requirements along with an

added signal type of-s(t).

(I) The same as I for two dimensions except that now the number of h(t) type arrivals

must be one less then the total of s(t) and -s(t) type arrivals.

(II) Each -s(t) type arrival must be preceded by an s(t) and an h(t) type arrival.

(III) Each h(t) type arrival must be preceded by an s(t) type arrival.

(IV) The last arrival m-ist be either an h(t) or -s(t) type arrival, prec!uding the trivial single

s(t) type arrival.

The restrictions above allow for the arrival of noncausal h(t) type signals as long as they are

preceded by causal s(t) type signals.

The precursor is in part an effect of the high frequency approximation used in ray

theories. The n/2 phase advance produced in rays that touch caustics is a high frequency

phenomenon, for low frequencies the phase advance tends to zero. In the HT all

frequencies in the spectrum of s(t) are phase advanced by rt/2 to produce h(t). This
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introduces low frequency components into the precursor that may contribute to the

noncausal shape 2. Hill states that the shape of the actual pulse is modified by this

frequency-dependent behavior of the phase shift, maintaining causality 2. Hill compares

the shapes of the calculation of the HT of a causal pulse shape and an exact numerical

calculation of the pulse after propagation along a ray path that touches a caustic. The

frequency response of the exact calculation is analyzed to show that as the frequency

decreased the phase advance also decreased, tending to zero as the frequency went to zero.

The shape of the HT pulse and the exact calculation were similar, although the exact

calculation contained a shorter and more abrupt precursor. By including the frequency-

dependence of the phase shift the precursor in the HT pulse no longer extends to t = -.

The exact numerical calculation performed by Hill of the shape of a transient signal

that has touched a caustic showed that the transformed pulse had a finite duration

precursor. This precursor still arrives with energy prior to the arrival time predicted by

propagation along the geometrical ray path. This apparently noncausal arrival may be

explained if the signal actually travels along a different path that is shorter then the

geometrical ray path as discussed below. Elementary ray theories use independent locally

plane waves that propagate along the ray paths (straight lines in homogeneous media) to

construct the wavefield. The field at any given point is then the superposition of these

plane waves. Near a caustic, however, the independent plane-wave character of the fields

is not applicable 16.

A method for dealing with ray fields near caustics is to use, instead of plane waves

with real phases, plane waves with a complex phase (evanescent plane waves) 16,17.18.

The local tracking of evanescent plane-wave fields shows that signals near a caustic move

along phase paths that are defined to be normal to the surfaces of constant phase 17. For a

Gaussian beam, which goes through a focus at its most narrow point (the beam waist), the

phase paths are actually hyperbola centered around the beam waist. Components of the

signals in a Gaussian beam travel along the hyperbolic phase paths as opposed to the
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geometrical straight line rays that cross in the beam waist. The distance along the phase

paths is shorter then the distance along the straight line rays. Boyd 19 has shown that the

difference in the path lengths can account for the nt phase advance of the signal after

passing through the focus. Though the signals travel along trajectories given by the phase

paths, the phase paths are not actual rays. A ray in a homogeneous medium is defined as a

straight line with real direction cosines for a real ray. Phase paths in a homogeneous

medium near a caustic are in general not straight lines. The direction cosines become

complex for a complex ray where a complex ray is one that travels in a complex space 17.

For the evanescent waves used to describe the fields near caustics, a phase path in real

(physical) space is the locus of points of the intersection of complex rays with the real

plane 16.17, 18. Signals that travel along phase path trajectories near caustics, as opposed to

along the straight line geometric ray paths, may actually travel a shorter distance and thus

arrive earlier then the times predicted for travelling along the ray paths.

4.3 THE ARRIVAL SEQUENCE OF THE TRANSVERSE CUSP CAUSTIC

A.THF EXPECTED ARRIVAL SEQUENCE FOR A TRANSVERSE CUSP

CAUSTIC PRODUCED BY REFLECTION FROM A CURVED SURFACE

The general wavefront shape in an exit plane g, n by W(x,y)= alx 2 + a2xy2 +

a3y 2 forms a three dimensional caustic surface similar to that shown in Fig. 5. An

observation plane parallel to the exit plane some distance z away that cuts through this

caustic surface exhibits a transverse cusp caustic, Fig. 6. The TCC is a cubic cusp curve

given by

DT(U - Uc)3 = V2,  (8)

where Dr is a unitless opening rate and U and V are unitless observation coordinates given

by u/z and v/z respectively. The caustic is symmetric about the u axis in the observation

plane and the cusp point is located at uc = Ucz , vc = 0. The diffraction catastrophe that
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Figure 5) A three dimensional view of the caustic surface. Transverse cusp caustics are

seen as uv cuts through this surface at a distance z from the exit plane. The locus of cusp

points in adjacent uv planes defines the rib of the caustic surface.
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Figure 6) A transverse cusp caustic in a uv observation plane. The shape of the cusp curve

is given by Eq. (8). At the point P inside the cusp curve there are three distinct signal

arrivals, on the cusp curve there are two distinct signal arrivals, and outside the cusp curve

there is only one signal arrival.
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decorates the TCC, produced by a steady state signal, is given by the Pearcey function 9

P(w2 ,wl) where wl and w2 vary as k3/4v and kli2u respectively with k = 2r/tA 10. As

discussed in Chapter 2 the wavefront W(x,y) can be produced by scattering from a surface

with the general shape

h(x,y) = hjx 2 + h2xy 2 + h3y 2 . (9)

The wavefront produced by scattering a point source of sound from a surface with local

shape given by Eq. (9) is characterized in the observation plane by the reduced distance

function

O(x,y,Ue,Ve) = bl'x 2 + a2'xy 2 + b3'y 2 - Uex - Vey, (10)

where bi' = -2hi + 1/(2z) + 1/(2zs), a2' = -2h 2 , Zs is the distance from the source plane to

the exit plane, and Ue and Ve are dimensionless coordinates u/z + us/zs and v/z + vs/zs

respectively depending on both the source and observation locations. Using the parameters

defined in the reduced distance function O(x,y,Ue,Ve), Eq. (8) may be rewritten to describe

the TCC formed by the reflected wavefront

DT(Ue- Uec ) 3 = Ve 2, (11)

where now

4a2' (12)
27 bl' 2

and the horizontal location of the cusp point is given by

Uec =  uS_ + Us 2bl'b3 ' (13)
Z Zs a2'

To show which of the rays touh the caustic, the complete distance function

4D(x,y,Ue,V e ) = r + rs + O(x,y,Ue,Ve), (14)

where 4(x,y.UeVe) is given by Eq. (10) and the analysis given in Appendix A are used.

This distance function is used in the diffraction integral to find the diffraction catastrophe in

the observation plane. Rays are located in the exit plane by the simultaneous solution of the
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ray conditions on the reduced distance function ao/Ix = 0 and D/ay = 0. The x

dependance of the distance function can be eliminated using the ray condition

_x - 2bl'x + a2'y 2 - Ue = 0, (15)

to find the horizontal location of the ray in the exit plane. The distance function now has

only y dependence. Using s = (la2'12/41bl'l) 1/4y the distance function becomes

0'(s,UeVe) = -sgn(bl') s4 - sgn(a2')4T lbl(Ue + 2blb 3 ') s2a2'

+ 4hi " 1/4V e Ue2 (16)+ ,la ) eS 4b 1'

where sgn(g) = Igl/g = ±1 and s has the same sign as y. The extrema of Eq. (16) will locate

the position of rays in the exit plane that pass through an observation point given by Ue and

Ve. Figure 7 shows a calculation of Eq. (16) for bl' > 0, a2' > 0, Ue > 0, Ve > 0. With

bI' positive there are two maxima and there for two ray paths that touch the caustic prior to

reaching the observer. In Fig. 7 as the observation point moves outside the caustic, one of

the two maxima merges with the minimum leaving a curve with one extremum that is a

maximum. It follows from Fig. 7 the earliest arrival of the travel fme surface for the TCC

inside the caustic will always be an s(t) type arrival and the last arrival will always be an

h(t) arrival. The fact that the rays touching a caustic are at a maximum of the O' means that

these rays are always the last to arrive.

As shown in Ch. 3, the singular part of the travel time surface of the TCC, Fig. 8,

has the same form as the singular surface of the swallow tail catastrophe. The orientation

of this surface along the time axis of Fig. 8 will depend on the parameter bl'. Figure 9a

shows a calculated cut through a travel time surface with bI' > 0 at the relative horizontal

position inside the caustic given by (Ue - Uecl = 0.1 191. Each point in Fig. 9a represents

the geometrical arrival time at a point along a vertical cut through the observation plane

corresponding to the vertical posi 'on of the point in the figure. Comparing Fig. 9a with

Fig. 7 shows that the two later arrivals are going to be at maxima of the distance function
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and there for h(t) type arrivals while the early arrival is at a minima of the distance function

and is an s(t) type arrival.

Form thL. analysis given above the expected sequence of arrivals for a surface that

forms a TCC with bl' and a2' positive would be shh inside the caustic and a single h

outside the caustic. A wavefront reflected from a surface with a negative hi term will

always have a positive value of bl'. Figure 10 shows a projection onto a plane, of the cusp

curve in the observation plane and the location of the rays in the exit plane that pass through

a vertical cut through the cusp curve. Moving up along the cut, outside the cusp curve

there is only one arrival (ray 1). From the discussion following Fig. 7, this arrival is at a

maximum of the distance function and is an h(t) type arrival. Crossing the cusp curve,

inside the caustic there are three arrivals at each point along the cut (rays 1'-3'). From Fig.

7, two of these arrivals will be at maxima of the distance function while the third is at a

minimum giving an arrival sequence of one s(t) type arrival then two h(t) type arrivals.
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b1 > 0; a2 > 0

S

Figure 7) The general shape of the distance function of the transverse cusp caustic

diffraction integral after the evaluation of the x dependence when bl' > O,a2' > 0, Ue > 0,

and Ve < 0.
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U-UCP

Figure 8) The travel time surface of the transverse cusp caustic has the same general shape

as the singular surface of the next higher codimension catastrophe, the swallow tail shown.
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Figure 9) The orientation of the travel time surface along the time axis depends on the sign

of b1 (a) bI' >0, a2 >0; (b) b' <0, a2 >0; (c) bI >0, a2' <0; (d) bI' <0. a2 <0.

The tail of the travel time surface is formed by the first two arrivals in (a) and (c) and the

last two arrivals in (b) and (d). The situations shown in (b) - (d) are discussed in Sec. 4.4.
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Figure 10) 'Me relative location of rays in the exit plane that pass through a vertical cut in

the observation plane when bl' > 0 and a2'> 0. Ray I passes through the cut below the

cusp curve in the observation plane. Rays lc and 2c pass through the lower branch of the

cusp curve, with ray path ic being the longer path to the cusp curve. Rays 1', 2', and 3'

pass through a point inside the cusp curve below the symmetry axis, with the ray paths

from shortest to longest being 3', 2', and 1'.

U/
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B. EXPERIMENTAL MEASUREMENT OF THE ARRIVAL SEQUENCE

FOR A TRANSVERSE CUSP CAUSTIC PRODUCED BY REFLECTION

FROM A CURVED SURFACE

Figure 11 shows two cuts through the travel time time surface of a TCC produced

by scattering a point source of sound from a curved metal surface with the general shape

given by Eq. (9). The surface height was measured on a grid of points and the data fit to

Eq. (9) giving hl = - 0.00031 cm- 1 and h2 = - 0.00117 cm- 2. As hl and h2 were both

negative, the parameters bI' and a2' were both positive for all Ze. With b1' and a2' both

positive the sequence of the s(t) and h(t) type arrivals given by Sec. 3.A is, one h(t) type

arrival outside the cusp curve and inside the cusp curve one early s(t) type arrival and two

later h(t) type arrivals.

The travel time cuts shown in Fig. 11 were produced by selecting a horizontal

position in the observation plane and collecting time traces at equispaced vertical positions.

The time traces could then be displayed in a waterfall format showing the arrival times of

the signals in the observation plane. Figure 1 la is a cut taken outside the cusp curve (for

present the case of a2' > 0 this means that Ue < Uec) and 1 lb is a cut taken well inside the

cusp curve (Ue > Uec). Figure 12 shows the arrivals of signals propagating along ray

paths that pass through the horizontal symmetry axis of the TCC. The first and last time

traces in Fig. 12 come from traces 21 in Figs. 1 la and 1 lb respectively and the rest come

from cuts made along equispaced horizontal positions between the horizontal positions of

Figs. 1 la and 1 lb. The cusp point of the TCC is located near the position corresponding

to time trace 2 in Fig. 12. Inside the cusp curve there appear to be only two arrivals,

however along the symmetry axis of the TCC the late arrival is due to the simultaneous

arrival of two signals that have the same path length but originate on different points of the

wavefront.

The reflection coefficient of the reflecting surface was approximated to be near unity

using the oblique incidence mass law found in Pierce 20. This approximation assumes that
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Figure 11) (a) Time traces taken along a vertical cut through in the observation plane for a

horizontal location outside the cusp curve. The waterfall display of the time traces shows

the arrival times of the single signal propagating along the single ray path from the

wavetruiji to poinis outside the cusp curve in the observation plane.
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F~igure l !) (b)Timne traces taken along a vertical cut through in the observation plane for a

horizontal location inside the cusp curve. The waterfall display cf the time traces shows

the arrival times of the signals that propagate along the ray paths from the wavefront to

points outside the cusp curve in the observation plane. Note the tail of the travel time

surface arrives FU'st.
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the wavelength of sound in the scattering surface X >> 41s where ls is the thickness of the

slab, Is = 15 mil = 0.38 mm. Measurements of the reflection coefficient, discussed in

Chapter 2 Appendix C, estimated r =1 for the range of spectral components of the

transients used. The reflection coefficient was real and positive and there was no phise

advance of the signal due to the reflection from the surface. The reflected signals were due

to a single reflection from the front surface of the reflector which had the proper shape to

form a TCC and there was no problem with reflections from the back of reflector.

The shapes of the observed pulses in Fig. 12 were compared with the the shape of

the incident pulse used in the experiment, Fig. 13. The incident pulse was produced by a

Sonic Instruments Inc. ultrasonic transducer type CBA 10-1. The transducer has a 1/4 in

diameter and has a heavily damped resonance at 10 MHz. The transducer was driven by a

Smith Kline Instruments medical ultrasound driver that was modified to be triggered at a

low repetition rate. The pulse provided by the driver was approximately a 70 V spike with

a rise time on the order of nanoseconds and an exponential tail = 3ps long. The pulse

produced by the CBA 10-1 is shown in Fig. 13. This signal was measured at a distance of

1 m from the source transducer by another CBA 10-1 used as the receiver in this

experiment. The driving signal was a unipolar spike while the measured source signal is

bipolar. The bipolar shape of the source pulse is due to two unipolar contributions 21, one

a direct signal from the planar face of the transducer, the second an inverted contribution

from an effective ring source lying along the transducer perimeter. In the near field these

two signals are separated in time. In the far field the two signals arrive vary near in time

producing the bipolar signal shown in Fig. 13.

Figure 14 shows the individual signals from the first and last time traces in Fig. 12

along with the HT of each signal calculated using the algorithm described in Sec. 2.B.

Figure 14a is the single arrival outside the cusp curve in the observation plane shown in the

' trai.e of Fig. 12, while Fig. 14b is its H I. Comparing Figs. 14a and 13, the single

signal a.'riving outside the cusp curve in the observation plane has a different shape from
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Figure 12) A horizontal cut through the travel tie surface along the symmetry axis of the

transverse cusp caustic. Trace 1 corresponds to trace 21 in Fig. 17a and trace 7 to trace 21

in Fig. 17b. The location of the arete is approximately the location at which trace 2 was

collected. TH~ later arrival in traces 4-7 is due the simultaneous arrival of two signals from

different portions of the wavefront.
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Figure 13) A representative source pulse used in the time domain experiments. Note that

this pulse is a causal pulse with a sharp turn on and no precursor on the begging of the

pulse.The bipolar shape of the pulse is due to the superposition of a direct signal from the

source transducer surface and an inverted signal from an effective ring source lying along

the transducer perimeter. This time trace was taken by pointing the receiving transducer at

the source transducer about I m away.
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Figure 14) (a) The single pulse in Fig. 18 trace 1. This pulse has the shape of the Hilbert

transform of the source pulse. (b) The Hilbert transform of (a) this pulse has the shape of

-1 times the shape of the source pulse. (c) The single early pulse in Fig. 18 trace 7. This

pulse has the shape of the source pulse. (d) The Hilbert transform of (c), this pulse has the

shape of (a). Note the precursor showing up prior to the expected arrival time of the ray in

the Hilbert transform. (e) The simultaneous second arrival in Fig. 18 trace 7. These pulses

have the shape of (a), (d), and the Hilbert transform of the source pulse. (f) The Hilbert

transform of (e), this pulse has the shape of -1 times the source pulse.
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the source signal. When Figs. 14b and 13 are compared the two signals appear to have

similar shapes differing by a factor of-1. If the shape of the incident signal, Fig. 13, is an

s(t) type shape, then the shape of the HT of Fig. 14a is a -s(t) type shape. The skew-

reciprocal nature of the HT suggests then, that Fig. 14a has the shape of the HT of the

incident signal shape and is an h(t) type arrival.

Figure 14c shows the single early arrival at the point along the symmetry axis inside

the cusp curve corresponding to the last time trace in Fig. 12. This arrival has the same

shape as the source pulse in Fig. 13. Thus the pulse in Fig. 14c is an s(t) type arrival and

Fig. 14d, which is the HT of 14c, is an h(t) type arrival. Comparing Figs. 14a and 14d

confirms the assumption made using the skew-reciprocal nature of the HT that Fig. 14a is

an h(t) type arrival. Figure 14e is the simultaneous later arrival at the same point inside the

cusp curve corresponding to the last trace in Fig. 12. Both of the arrivals in Fig. 14e

appear to have the same general shape of the signals in Figs. 14a and 14d. Thus both of

these late arrivals 4re h(t) type arrivals and the HT of Fig. 14e, Fig. 14f, is a -s(t) type

shape.

By the comparison of Figs. 13 and 14a-f, the sequence and type of arrivals for a

TCC wavefront with bl' > 0 and a2' > 0 is given. The single arrival outside the cusp curve

in the observation plane, Fig. 14a, is an h(t) type arrival. Inside the cusp curve the single

early arrival is an s(t) type arrival, while the sihaultaneous late arrivals are both h(t) type

arrivals. This sequence of the type of the arrivals agrees with the analysis of the

relationship between bI' and a2' and the ray paths that touch the caustic surface given in

Sec. 3.A. It was assumed in that analysis that there was no phase shift on reflection. Were

there a phase advance of it/2 on reflection, the expected arrival sequence inside the cusp

curve would have been h(t), - s(t), - s(t). As none of the signal were

- s(t) type arrivals, the assumption that there was no phase advance associated with the

reflection was valid.
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4.4 THE EFFECT OF THE WAVEFRONT PARAMETERS a2' AND bl' ON

THE ARRIVAL SEQUENCE OF THE TRANSVERSE CUSP

It can t- seen from Eqs. (1 1)-(13) that the parameter b3' has no effect on the shape

of the caustic other then to locate the cusp point. The important parameters for determining

the shape of the caustic and the arrival sequence are a2' and bl' as they determine the rate at

which the caustic opens and the orientation of the travel time surface. In Eq. (12), a2'

controls the direction along which the caustic opens. For a2' negative the caustic opens

along the negative Ue direction (Fi -s. 15a and 16a). When a2' is positive the caustic

opens along the positive Ue direction (Figs. 17a and 18a). Inspection of Fig. 9 shows,

however, that the parameter a2' has no effect on the arrival sequence. It only affects the

spatial orientation of the caustic surface and the opening rate of the surface.

The effect of bI' on the caustic shape is more subtle then just a sign change as with

a2'. Once the reflecting surface shape is known the parameter a2' is fixed. However bI'

depends on the surface and on z and Zs through the expression

1
bl' = -2hi + 1--' (17)

where Ze = (1/z + l/zs)- 1. Thus the opening rate DT will be affected through bl' by a

change in either the source or observation distances. The variations in Ze, and thus the

shape of the caustic and travel time surfaces, discussed below can be attributed to changes

in either z or zs. Thus the caustic surface may be traced by fixing an observatioa plane and

moving the source plane. The dependence of bl' and b3' on z and zs is symmetric.

The sign of the surface parameter h 1 has a large affect on the shape of the caustic

surface through the dependence of bI' on h1. When hI < 0, b' will always be positive for

positive values of ze. In the reflection problem being discussed both z and Zs were always

positive so ze was always positive. Thus for h I < 0, b,' goes from +o when ze = 0, to
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bl'= - 2hi > 0 for ze - oc. This gives values for DT from 0 to -2h2/27hl 2 as Ze goes

from 0 to o. When hI > 0, b1' goes from +- when ze = 0 to -2hI < 0 when ze =-oo

passing through bl' = 0 at Ze = zc where Zc = 1/4hi. As bl' - 0, DT, which goes as

1]/b' 2 , diverges rapidly. For ze < zc the iDrI goes from 0 to 00 as ze goes from 0 to ZC

while for Ze > zc , IDTI goes from oo at Ze = Zc to IDTI = 12h2/27h1 21 at Ze = *

Figures 15a-18a show the general shapes of the caustic surface associated with a

TCC in a plane for: (15a) bl' > 0, a2' < 0; (16a) bl' < 0, a2' < 0; (17a) bl' > 0, a2' > 0;

and (18a) bI' < 0, a2' > 0. Each figure was calculated using a value of hI > 0 to show the

effect of the sign change of bI' on the caustic surface by simply increasing Ze. In both

(15a) and (16a) , the caustic surface opens along the negative Ue direction due to a2' < 0.

In (15a) the opening rate begins to diverge -s Ue increases, while in (15a) the opening rate

decreases as Ue increases. The value zc is located between the Ze values used in the two

calculated surfaces shown, as near -c the opening rate becomes so large as to dominate the

plot of the surface. Figures (17a) and (18a) show calculated surfaces with a2' > 0. As in

(15a) , the opening rate of the surface in (17a) increases rapidly as ze increases and bI'

goes to zero. The opening rate in (18a) decreases rapidly as bl' becomes more negative, as

in (16a).

Figures (15b) -(18b), shown below the associated caustic surface, show the

calculated locations of rays in the exit plane that pass through points along a vertical cut

through a transverse cusp curve in an observation plane at the effective horizontal point

I(Ue - Uec)l = 0.1191. These figures show the effect of the change in sign of bl' on the

spatial orientation of the ray locations in the exit plane relative to the caustic surface.

Comparing Figs 15b and 17b and Figs. 16b and 18b along with Eq. (10) shows that a

change in the sign of a2' simply reflects the wavefron: .nd associated caustic through the

vertical axis. The change between Figs 15b and 17b and Figs. 16b and 18b is the sign of

a2' which gives the opposite spatial orientation for the caustic surface and the ray locatins

for each figure.
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The effect of the change in sign of bl' is seen when Figs. 15b and 16b and Figs.

17b and 18b are compared. Each pair of figures has the same sign for a2' but opposite

signs for bl'. When bl' is negative, the parabola described by the locations of the rays in

the exit plane that passes through a vertical cut in a transverse observation plane opens

along the same direction as the caustic surface. When bl' is positive, the parabola opens

along the opposite direction as the caustic. The effect of the sign change in bI' on the travel

time surface is shown in Fig. 9. The four cuts through travel time surfaces inside the

caustic differ in only the signs of bl' and a2'. Note that the sign of a2' has no effect on the

temporal orientation of the travel time surface. However, a change in the sign of bl'

inverts the travel time surface in time. The effect on O' given in Eq. (16) of a negative bl'

is seen in Fig. 19, where 0' is calculated with bl' equal to the negative of that used in Fig.

7 and all the other parameters unchanged. In Fig. 19 the calculated reduced distance

function contains two minima and one maximum. Using the analysis given in Appendix A,

the extrema of the reduced distance function give the arrival sequences, marked in Fig. 9,

of one hkt) type arrival outside the caustic and inside two early h(t) type arrivals and one

later -s(t) type arrival. Figure 20 shows the projection of the cusp curve and ray locations

onto the same plane similar to that shown in Fig. 10 except with b' < 0. Where the ray

paths in Fig. 10 originate inside the cusp curve in the plane of projection, for Fig. 20 the

ray paths originate outside the cusp curve.

It is the spatial orientation of the ray locations that determines the arrival sequence.

The distance function given in Eq. (16) will have three extrema: two maxima and one

minimum or two minima and onc maximum depending on the sign of b1 '. The arrival

sequence associated with the signs of bI' are: for bI' > 0 shh inside the caustic and h

outside the caustic, for bl' < 0 hh-s inside the caustic and h outside the caustic. The arrival

sequence is not affected hy a2'.
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Figure 15) (a) The caustic surface when bI' > 0 and a2' < 0. The divergence of the

opening rate as z increases is due to the surface parameter hI being positive. (b) The

orientation of the rays in the exit plane that pass through a vertical cut through the cusp

curve in the observation plane. The parabola formed by the ray locations in the exit plane

opens opposite the direction of the caustic surface.
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Figure 16) (a) The caustic surface when bl' < 0 and a2' < 0. The divergence of the

opening rate as z increases is due to the surface parameter hl being positive. (b) The

orientation of the rays in the exit plane that pass through a vertical cut through the cusp

curve in the observation plane. The parabola formed by the ray locations in the exit plane

opens along the direction of the caustic surface.
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Figure 17) (a) The caustic surface when bl' > 0 and a2' > 0. The divergence of the

opening rate as z increases is due to the surface parameter h 1 being positive. (b) The

orientation of the rays in the exit plane that pass through a vertical cut through the cusp

curve in the observation plane. The parabola formed by the ray locations in the exit plane

opens opposite the direction of the caustic surface.
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Figure 18) (a) The caustic surface when bl' < 0 and a2' > 0. The divergence of the

opening rate as z increases is due to the surface parameter h1 being positive. (b) The

orientation of the rays in the exit plane that pass through a vertical cut through the cusp

curve in the observation plane. The parabola formed by the ray locations in the exit plane

opens along the direction of the caustic surface.
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b < 0; a2# > 0

S

Figure 19) The general shape of the distance function of the transverse cusp caustic

diffraction integral after the evaluation of the x dependence when b' = - hI' from Fig. 7

and a2', Ue, and Ve are unchanged from Fig. 7.
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Figure 20) The relative location of rays in the exit plane that pass through a vertical cut in

the observation plane when bl' < 0 and a2'> 0. Ray I passes through the cut below the

cusp curve in the observation plane. Rays Ilc and 2c pass through the lower branch of the

cusp curve, with ray path ic being the shorter path to the cusp curve. Rays 1', 2', and 3'

pass through a point inside the cusp curve below the symmetry axis, with the ray paths

from longest to shortest being 3'. 2', and 1'.
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4.5 DISCUSSION AND CONCLUSION

The experiments discussed in Sec. 4.3 show that whether an echo had touched a

caustic or not prior to reaching the observation plane could be established from its shape.

Furthermore, the identification of the echoes in the sequence was in agreement with

predictions. The theory for other surface parameters from which a TCC can be produced

was discussed in Sec. 4.4. The results are related to the more general aspects of

identifying arrivals discussed here in Sec. 4.5.

Figure 21 shows the longitudinal cusp caustic formed by the reflection of a plane

wave from a circular surface. The longitudinal cusp caustic opens opposite the direction of

propagation of the wavefront forming the caustic. It is clear from Fig. 21 that inside tihe

caustic there will be one early s(t) type arrival and two later h(t) type arrivals, while the one

ray left outside the caustic will have touched the caustic and be an h(t) type arrival. Figure

22 shows the opposite orientation for the longitudinal cusp caustic, opening along the

direction of propagation. From the three rays shown (A, B, and C) the orientation of the

rays arriving inside the caustic is two early s(t) type arrivals and one later h(t) type arrival,

while outside the caustic none of the rays will have reached the caustic and there is one s(t)

type arrival.

When Figs. 21 and 22 are compared to Figs. 10 and 20 the following is evident.

For bI' > 0 the TCC has a spatial orientation relative to the ray paths similar to that of the

longitudinal cusp caustic shown in Fig. 21 while for bl' < 0 the TCC has a spatial

orientation similar to that of the longitudinal cusp caustic in Fig. 22. The difference in the

spatial orientations of the ray locations in the exit plane relative to the caustic surfaces can

be seen as follows: for bl' > 0 rays originate inside the caustic and move out and for bl' <

0 rays originate outside the caustic and move in. Considering the orientation of the ray

locations relative to the caustic surfaces shown in Figs. 15-18, when bl' > 0 the sequence

of the s(t) and h(t) type arrivals is that of a longitudinal cusp caustic opening opposite the

direction of propagation, Fig. 21. When bl' > 0 there will be one h(t) arrival outside the
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cusp curve, and inside the cusp curve there will be one early s(t) type arrival and two later

h(t) type arrivals. For bl' < 0 it is anticipated that the sequence of the arrivals for the TCC

is that of a longitudinal cusp caustic that opens along the direction of propagation, Fig. 22.

However for the TCC produced by reflection from a surface described by Eq. (9) each

arrival will have an extra it/2 phase advance due to touching the caustic close to the

reflector. Thus for bl' < 0 there will be one h(t) type arrival outside the cusp carve, and

inside the cusp curve two early h(t) type arrivals and one later -s(t) type arrival.

The experimental data shown in Sec. 3.B was obtained from a wavefront with bl'

> 0 and a2' > 0. The single arrival outside the cusp curve in the observation plane is an h(t)

type arrival. Inside the cusp curve in the observation plane the arrivals have the sequence,

onc s(t) then two h(t) type arrivals. As bl' > 0 and a2'> 0 for this wavefront the observed

arrival orientations are those expected from the analysis given in Sec. 3.A. From

observations of the locations of rays in the exit plane made by positioning an anti-reflection

tile in front of the reflecting surface and knowledge of the location of the cusp curve in the

observation plane, the orientation of the ray locations in the exit plane relative to the cusp

curve in the observation plane was verified to be that shown in Figs. 10 and (17b) for bl' >

0 and a-' > 0.

The sequence of the arrivals shown by the data appears to violate the restrictions

imposed by Brown and Tappert 15. However, the restrictions of Brown and Tappert apply

to wavefields that are not aperture limited. Since the size of the reflecting surface used was

finite, the reflected wavefront was aperture limited. Echoes from the edge of the reflector

were not clearly seen either because of their low amplitude or because their time of arrival

was outside the time window considered. The low amplitude may be partially a

consequence of the weak directionality of the source and receiver. Brown and Tappert state

that for aperture limited waefields the restictions given in Sec. 2.B may not hold. This

does not, however, reconcile the expected behavior of the caustics discussed in Sec. 4,
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unless the aperture free TCC with bl' > 0 or bl' < 0 is always imbedded in a higher order

caustic with at least two earlier s(t) type arrivals 'hen the arrivals of the TCC.
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Figure 21) The longitudinal cusp caustic formed by the reflection of a plane wave from a

semi-circular surface. The longitudinal cusp caustic in this figure opens opposite the

direction of propagation of the reflected wavefront. The rays from the upper and lower

portions of the wavefront travel a longer distance to reach points inside the caustic thus the

arrival time sequence of signals inside the caustic is s(t), h(t), h(t). Outside the caustic the

single ray must have touched the caustic and is thus an h(t) type arrival.
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Figure 22) An example of a wavefront that forms a longitudinal cusp caustic that opens

along the direction of propagation. The arrival scheme for the signals propagating along

the ray paths A, B, and C in this figure inside the caustic is s(t), s(t), h(t), where the upper

and lower ray paths from this wavefront to points in the caustic are shorter distances then

the center ray path. Outside the caustic none of the rays have reached the caustic and the

single arrival will be an s(t) type arrival.
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APPENDIX A

THE RELATION OF THE MAXIMA AND MINIMA OF THE DISTANCE

FUNCTION TO THE RAYS THAT TOUCH THE CAUSTIC

Consider the surface formed by the distance function for points in the exit plane to a

point in the observation plane. The ray condition defines the location of rays in the exit

plane as the extrema of the distance function. In a small region about a ray in the exit plane

there will be two principle directions x' and y' associated with the curvature of the distance

function at that point. When the ray location is the origin of the principle coordinates (x' =

0, y' = 0), a Taylor expansion of the distance function about the ray gives

O(x',y',Ue,Ve) = 0(0,0,Ue,Ve) + _ x'2 + _ Y,2 (A1)

ax'2 x+ay'2 y.(l

There arc then three possibilities for the type of the extrema of the distance function at the

ray: Both second partial derivatives are positive and the distance function increases in either

direction relative to the ray location; the ray is located at a minimum of 0. The second

partial derivatives have opposite signs so that the distance function increases along one

coordinate and decreases along the other; the ray is located at a saddle point of 0. Or, both

second derivatives are negative and the distance function decreases in either direction from

the ray location; the ray is located at a maximum of 4.

Dangelmayr and Giittinger22 show that, relative to a ray located at a minimum of ,

the spectral components of a ray located at a saddle point of 0 are phase advanced by a

factor of r/2. The spectral components of a ray located at a maximum of 0 are phase

advanced relative to a ray located at a minimum of 4 by a factor of t. This relation of the

phases of the three possibilities shows that a ray at a minimum of the distance function will

not have touched a caustic prior to arriving in the observation plane. A ray located at a

saddle point of 0 will have touched one caustic prior to arriving in the observation plane. A
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ray located at a maximum of 0 will have touched two caustics prior to arriving in the

observation plane.

For the transverse cusp caustic the analysis given in Chapter 1 for a reflecting

surface with h I < 0 forms only one caustic surface for z > 0. A second virtual caustic

surface is formed for z < 0, however, for the reflection problem under consideration a ray

will never touch this caustic. Thus only two of the above possibilities should be evident in

reflected signals. A ray from the surface will either not have touched a caustic, or it will

have touched only one caustic and its spectral components will be phase advanced by t/2.

The coordinates (x,y) in the exit plane are not necessarily the principle coordinates and thus

the identification of the ty pe of extremum of the distance function is not as easy as that

given in the discussion that follows Eq. (Al), though the relationship between the types of

extremum and how many times a ray touches a caustic is the same.

For a general three dimension surface defined by z = f(x,y), the extremum are given

by W)f/a3x = 0 and af/ay = 0. The type of the extremum is identified by 23.24

maximum: H(x,y) > 0 and a 2f/ax2 < 0 (A2)

minimum: H(x,y) > 0 and a2 f/ax2 > 0 (A3)

saddle: H(x,y) < 0, (A4)

where H = (a2f/ax2)(a2f/av 2) - (a2f/axay)2 and in terms of the principle coordinates

32f/ax~y = 0. This can be related to the reduced distance function O(x,y,Ue,Ve) in Eq. (10)

by letting 0 = f. By using the ray condition ao/ax = 0 to find x(y), 0 can be written in the

form of Eq. (16). The extrema of Eq. (16) are classified by: a maximum when d20/ds2 <

0, an inflection point when d20/ds 2 = 0, and a minimum when d2o/ds2 > 0. The hessian,

H, and d2 0/ds2 are related by H = 2bj'K(d2O/ds 2), where K = Ia2'/21bl'I/ 2 is a positive

number and thus will not affect the sign of H. Whether or not a ray touches a caustic prior

to arriving in the observation plane is then given by the signs of bl' and d2o/ds 2.
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For the surface parameters of the reflecting surface used in the experiments bl' > 0

for all ze and the discussion below follows from the analysis of the extremum

identifications given above. As a2o/ax 2 = 2bl' > 0 at all observation points, for a ray to

have touched a caustic O(SUe,Ve) must be at a maximum in terms of s (a2o/as2 < 0).

Frona te relation H = 2bl'K( j2p/s2), H < 0 and the ray is located at a saddle point cf the

distance function. When a2o/as2 > 0, at a minimum of O(s,Ue,Ve), H > 0 and with

a2o/ax2 = 2bl' > 0 the ray is at a minimum of the distance function and will not touch the

caustic. Thus the maxima of Eq. (16) will define rays that touch one caustic and the

minima define rays that do not touch a caustic when bl' > 0.

When hI > 0 it can be argued that there will be two caustic surfaces for z > 0, one

of which is located near the reflector in the region where bl' > 0. As ze increases, bl',

which starts out positive, becomes negative. When bl' < 0, a2o/ax2 = 2bl' < 0 and the

extrema of O(s,Ue,Ve) will define either a saddle point or a maximum. Thus it follows

from Fig. 19 and the sign of a2/ax2 that two of the rays come from saddle points of 4 and

one comes from a maximum of 0. As the each ray leaves the exit plane they will touch the

caustic formed when bl' is positive (close to the reflecting surface) prior to reaching the

caustic formed when bl' is negative (far from the reflecting surface). Thus the analogy

between the TCC when bI' < 0 and the axial cusp caustic, Fig. 22, given in Sec. 4.5 still

holds though the signals associated with the TCC will have the arrival sequence hh-s due

to having touched the caustic formed when bi' > 0.
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CHAPTER FIVE

COMPUTER SOFTWARE

5.1 THE CALCULATION OF THE PEARCEY FUNCTION

The basic algorithm used to calculate the Pearcey function P(w2, wI) was provided

by F. J. Wright 1. This algorithm was modified to run on the IBM3090 with the

quadrature routine being included in the algorithm, as opposed to using the IMSL library,

for convenience. The integrand of the Pearcey function exp(iW) with

S4  S2()
lv=T"-+w2-- + WlS . (1)

is highly oscillatory away from the stationary points of the phase. The use of standard

quadrature routines to evaluate the Pearcey function gives inaccurate answers due to the

highly oscillatory nature of the integrand. A general outline of the method used by the

algorithm to compute P(w2,w2) and the inaccuracy of the method for points far from the

cusp point are discussed below. The method used to evaluate P(w2,w2) is also used to

Berry et al. to evaluate the diffraction integral describing the elliptic umbilic diffraction

catastrophe 2.

To evaluate the Pearcey function, the integral is split into three separate integrals

00 B A

P(w2,wI)= Jexp(p)ids)= dexp(iv)ds+fexp(iW)ds+jexp(il) ds. (2)

The limits B and A are set to include all of the stationary points si of the integrand where

- Si= Si3 + w2si + w I = 0. (3)

Both of the outer integrals contain the region where the integrand exp(ily) is highly

oscillatory and are evaluated using an asymptotic approximation. The asymptotic series is

produced by a repeated integration by parts of the outer integrals starting with
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exp(i 1) [i' exp(i) dxp(i) (4)exp iwt =i iVt' ds

With N(s = +co) = cc, the first three terms in the asymptotic series are

. exp[iWt(A)] exp[iW(B)]
I W'(A) -.- '(B)  (a

W"(A) exp[ixg(A)] -"(B) exp[il(B)] (5b)
[W'(A)] 3  [W'(B)]3 B

i W .."(A) -3 [W"(A)]2 }exp[iW(A)]

[W'(A)14  [W'(A)15 I

-i W ...'(B) 3[W"(B)12 exp[i(B)], (5c)

where W = dxI/ds. The center definite integral is evaluated using a standard quadrature

routine as it contains all the stationary points of the phase and near the cusp point does not

oscillate rapidly.

As the observation point moves far from the cusp point, the approximation to the

Pearcey function given above begins breakdown. The reason for this breakdown is

discussed below. For points near the cusp point the stationary points of the phase are close

together and the integrand in this region is not highly oscillatory. As the observation point

moves away from the cusp point the stationary points move further apart. The region

between the stationary points becomes highly oscillatory when there is a large separation

between the stationary points, thus the quadrature routine used to approximate the definite

integral returns inaccurate results. Figures 1- 6 show calculations of

COsS-4 S2 S4 s2+ w2- + WlS), sin(+ w 2 + (6a,b)

co(T 2 4-wiw), + ~wis),

and Eq. (3) showing the stationary points, where aW/as = 0. From Figs. 1- 6 it can be

seen that the oscillatory nature of the integrand begins to dominate the region between the

stationary points of the phase as the observation point moves away from the cusp point.
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Thus, far from the cusp point the quadrature routine will not return accurate values for the

center definite integral and the approximation of the Pearcey function begins to breakdown.

The code used to calculate the Pearcey function follows.

*** PROGRAM TITLE: CANONICAL CUSP DIFFRACTION CATASTROPHE
** MAGNITUDE CONTOUR DATA GENERATOR

*** PROGRAM INTENT
*** THIS PROGRAM GENERATES A RECTANGULAR GRID OF CANONICAL
*** CUSP
*** DIFFRACTION CATASTROPHE MAGNITUDES FOR PLOTTING BY
* CUSPCON SAS.

* CUSPCON USES COMPLEX FUNCTION CUSPDC AND WRITES THE
*** OUTPUT FILE
* CUSPCON DATA.

*** MAIN

INTEGER IDIVS
REAL V(400), U(300), MAGC(400,300), MAX, K, BI
COMMON /PARAMS/B 1, K
COMMON /COORD/ U, V, MX, MY
COMMON /LEVEL/ MAX, MAGC, NX, NY

MAXMAG = 0.0

CALL POINTS

CALL MAG

CALL RAS

END

SUBROUTINE MAG

REAL U(400), V(300), MAX. MAGC(400,300), UC, B I, K
COMPLEX C, CUSPDC, CPH
COMMON /PARAMS/ B I , K
COMMON /COORD/ U. V. MX, MY
COMMON LEVEL/ MAX. MAGC, NX, NY
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WRITE(*,*) NX, NY
WRrE(*,*) MX, MY
NY = MY
NX = MX
WRITE(*,*) NX, NY
WRITE(*,*) MX, MY

DO 12 IYI=I,NY
DO 13 IX1=1,NX

UC = V(IY1) - 10.0
IF (U(IX1).LT.UC) THEN
MAGC(IX1,IY I) = 0.0
GO TO 13
ENDIF
C = CUSPDC(U(IX1), V(IY1))
MAGC(IX1,IY 1) = SQRT(REAL(C)**2 + IMAG(C)**2)
IF (MAGC(IXI,IY1).GT.MAX) MAX=MAGC(IX 1,IY1)

13 CONTINUE
12 CONTINUE

WRITE(*,*) MAX,N

RETURN
END

*** CUSPDC RETURNS THE CANONICAL CUSP DIFFRACTION CATASTROPHE
*** AT (U, V) TO AN ESTIMATED ACCURACY OF 0.001.
*** AN EARLIER VERSION WAS TESTED ON THE QMC2988 BY F. J. WRIGHT

FOR - 8 <= U <=.4 AND 0 <= V <= 6.

COMPLEX FUNCTION CUSPDC(U, V)

REAL A, B, Cl, RT2PI, START, U, U3, UU, V, VV
COMPLEX QUAD, TAILS, SERIES
COMMON iCOORDS/ UU, VV
DATA RT2PI /1.4142136/
DATA Cl /10./
DATA START /5./

*** START MAY NEED INCREASING FOR LARGE NEGATIVE U AND LARGE V
*** (TOO LARGE A VALUE MERELY REDUCES EFFICIENCY).

UU = U
VV = ABS(V)

*** SET STARTING VALUES FOR NEWTON-RAPHSON ITERATION FOR
*** CUTOFFS:
*** LOWER CUTOFF B IS ALWAYS < 0 AND NEVER GIVES ANY PROBLEM -
*** JUST TAKE STARTING VALUE SUFFICIENTLY LARGE AND NEGATIVE.

B = - START
*** UPPER CUTOFF A DEPENDS CRITICALLY ON SHAPE OF THE DERIVATIVE



214

*** OF THE PHASE FUNCTION, WHICH DEPENDS ON U AND V.
IF (U .GT. 0) THEN

A - SIGN(START, CI - VV)
ELSE
U3=-U/3.
A -- SIGN(START, CI - VV + 2. * U3 * SQRT(U3))
END IF

TAILS = SERIES(A, Cl) - SERIES(B,- Cl)

*** CUSPDC HAS AN ACCURACY OF 0.001 SINCE TAILS + QUAD'S IS 0.002.
CUSPDC = (TAILS + QUAD(B, A)) / RT2PI

RETURN
END

*** FUNCTION SERIES(S, +/-Cl) EVALUATES THE TAIL OF THE INTEGRAL
*** USING ASYMPTOTIC SERIES TO AN ESTIMATED ACCURACY OF 0.0005
*** AND ALSO RETURNS THE OPTIMAL CUTOFF S.

COMPLEX FUNCTION SERIES(S, PMCI)

REAL ASTEP, C2, C3, COR, P, P1, P2, P3, PHI, PMC1,
+ STEP, T. TI, T1SQ, T2, T3, U, V, S
COMMON /COORDS/ U, V
DATA ASTEP /0.02/
DATA C2 /0.01/
DATA C3 /0.0005/

*** DERIVATIVES OF THE PHASE FUNCTIONP(S) S *(S *(S * S/4 + U/2) + V)

PI(S) = S * (S * S + U) + V
P2(S) 3. * S * S + U
P3(S) = 6. * S

*** PMC = +/-C1
*** ASTEP = MAGNITUDE OF THE OPTIMIZATION STEP

STEP = SIGN(ASTEP, PMCI)

*** SOLVE PI(S) - PMCI = 0 FOR INITIAL CUTOFF, USING NEWTON-
RAPHSON:
1 COR = (PI(S)- PMCI)/P2(S)

S = S -COR
IF (ABS(COR) .GT. ASTEP) GOTO 1

*** EVALUATE SERIES STEPPING OUT AS NECESSARY:
GOTO 20

10 S = S +STEP
*** TERM 1:
20 TI = 1./ PI(S)

TISQ=TI * TI
T= P2(S) * TISQ

*** TERM 2:
T2=T*TI
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IF (ABS(T2) .GT. C2) GOTO 10
* TERM 3:

T3 = P3(S) * T1SQ* T1SQ- 3. * T* T* TI
IF (ABS(T3) .GT. C3) GOTO 10

PHI = P(S)
SERIES = CMPLX(COS(PHI), SIN(PHI)) * CMPLX(T2, TI + T3)
RETURN
END

*** FUNCTION QUAD(B, A) EVALUATES BY QUADRATURE THE CENTER
RANGE OF
*** THE INTEGRAL TO AN ESTIMATED ACCURACY OF 0.001.

COMPLEX FUNCTION QUAD(B, A)

REAL A, B, COSPHI, QI, QR
EXTERNAL COSPHI, SINPHI, GQUAD

*** THIS IS AN ADAPrIVE QUADRATURE ROUTINE FROM THE 'IMSL'
LIBRARY.

CALL GQUAD(B,ACOSPHI,QR)
CALL GQUAD(B,A,SINPHI,QI)
QUAD = CMPLX(QR, QI)
RETURN
END

REAL FUNCTION COSPHI(S)
REAL U, V, S
COMMON /COORDS/ U, V
PHI(S) = S *(S *(S * S/4. + U/2.) + V)
COSPHI = COS(PHI(S))
RETURN
ENTRY SINPHI(S)
SINPHI = SIN(PHI(S))
RETURN
END

C
C

SUBROUTINE GQUAD
C
C PURPOSE
C TO COMPUTE INTERGRAL(FCT(X), SUMMED OVER X FROM XL TO XU)
C
C USAGE
C CALL GQUAD(XL.XU,FCT,Y)
C PARAMETER FCT REQUIRES AN EXTERNAL STATEMENT
C
C PARAMETERS
C XL - DOUBLE PRECISION LOWER BOUND OF THE INTEGRAL.
C XU - DOUBLE PRECISION UPPER BOUND OF THE INTEGRAL.
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C FCT - THE NAME OF THE DOUBLE PRECISION EXTERNAL FUNCTION
C SUBPROGRAM USED.
C Y - THE RESULTING DOUBLE PRECISION INTEGRAL VALUE.
C
C REMARKS
C NONE
C
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED
C THE EXTERNAL DOUBLE PRECISION FUNCTION SUBPROGRAM FCT
C MUST BE SUPPLIED BY THE USER
C
C METHOD
C EVALUATION IS DONE BY MEANS OF A 32-POINT GUAS QUADRATURE
C FORMULA, WHICH INTERGRATES POLYNOMIALS UP TO DEGREE 63
C EXACTLY.
C FROM THE FORTRAN COOKBOOK IN THE OUTER OFFICE.
C
C .. .................................
C

SUBROUTINE GQUAD(XL,XU,FCT,Y)
C
C

REAL XL, XU, Y, A, B, C, FCT
EXTERNAL FCT

C
A = 0.5D0 * (XL + XU)
B=XU-XL
C = 0.49863193092474078D0 * B
Y = 0.35093050047350483D-2 * ( FCT(A+C) + FCT(A-C))
C = 0.49280575577263417D0 * B
-= Y + 0.8137197365452835D-2 * (FCT(A+C) + FCT(A-C))
C = 0.48238 112779375322D0 * B
Y = Y + 0. 1269603265463 1030D- 1 * (FCT(A+C) + FCT(A-C))
C = 0.46745303796886984D0 * B
Y = Y + 0.17136931456510717D-1 * (FCT(A+C) + FCT(A-C))
C = 0.44816057788302606D0 * B
Y = Y + 0.214179490111 13340D-1I * (FCT(A+C) + FCT(A-C))
C =0.42468380686628499D0 * B
Y = Y + 0.25499029631 188088D-1I * (FCT(A+C) + FCT(A-C))
C = 0.3972418979839712090 * B
Y = Y + 0.29342046739267774D-. 1 * (FCT(A+C) + FCT(A-C))
C = 0.36609105937014484D0 * B
Y = Y + 0.3291111 1388180923D-1I * (FCT(A+C) + FCT(A-C))
C = 0.33152213346510760D0 * B
Y =Y + 0.36172897054424253D-1I * (FCT(A+C) + FCT(A-C))
C = 0.29385787862038116D0 * B
Y = Y + 0.39096947893535153D-1I * (FCT(A+C) + FCT(A-C))
C = 0.2534499544661 1470D0 * B
Y = Y + 0.416559621 13473378D-1I * (FCT(A+C) + FCT(A-C))
C = 0.21067563806531767D0 * B
Y = Y + 0.43826046502201906-I * (FCT(A+C) + FCT(A-C))
C = 0. 16593430 114106382D0 *B
Y = Y + 0.45586939347881942D- I * (FCT(A+C) + FCT(A-C))
C =0. 11964368112606854D0 * B
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Y = Y + 0.46922199540402283D-1I * (FCT(A+C) + FCT(A-C))
C = 0.7223598079139825D-1I * B
Y = Y + .47819360039637430D-1I * (FCT(A+C) + FCT(A-C))
C = 0.24153832843869158D-1 * B
Y = B * (Y + 0.48270044257363900D- 1 * (FCT(A+C) + FCT(A-C)))
RETURN
END

SUBROUTINE POINTS

REAL U(400), V(300), SQ2, X2, Y1
REAL D, UL, UH, VL, VH, SPACEV, SPACEU, I, J
INTEGER N, IU, IV, MX, MY
COMMON /COORD/ U, V, MX, MY

CALL PARAM(D,X2,Y 1,Z,SQ2)

READ(7,*) UL, UH
READ(7,*) VL, VH
READ(7,*) MX, MY

WRITE(10,8) UL, UH
WRYTE(10,9) VL, VH

8 FORMAT('UL=', 1F1.5,' UH=', IF1O.5)
9 FORMAT('VL=', 1F1.5,' VH=', l1I.5)

DIVS = MY
SPACEV = (VH-VL)IDIVS
DIVS =MX
SPACEU = (UH - UL)/DIVS

IX =0
IY =o

DO 10 J = VL, VH, SPACEV
y =ly +1I

V(IY) =J * Y1
10 CONTINUE

DOll1 I=UL, UH, SPACEU
[X =lx + I
U(IX) = I * X2

11I CONTINUE

RETURN
END
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SUBROUTINE RAS

REAL MAX, MAGC(400.300), NORFAC
INTEGER NX, NY, IRAS, N, IX, IY
COMMON /LEVEL/ MAX, MAGC, NX, NY

WRITE(*,*) MAX
NORFAC = 255.0 / MAX
WRITE(9,1I) NX
WRITE(9,1I) NY

DO 3IY = 1, NY
DO 2IX = 1, NX

IRAS = NINT(NORFAC *MAGC(IX,IY))
WRITE(9,1I) IRAS

I FORMAT(115)
2 CONTINUE
3 CONTINUE

RETURN
END

SUBROUTINE PARAM(D ,X2,Y1,Z,SQ2)

REAL Z,ZS,F,CS,UP,UA,VP,VA,C1 ,C2,C3,SQ2,ZE,B1I,B2,A2,K,ABI1,Y 1
REAL X1,X2,D
COMMON /PARAMS/ BI, K

READ(7,*) Z, ZS
READ(7,*) F, CS
READ(7,*) Cl, C2 , C3
WRITE(*,*) Z, ZS
WRITE(*,*) F, CS
WRITE(*,*) Cl, C2 , C3

SQ2 = 1.4142136

ZE = 1/(1/2 + 1/ZS)
Bi = -2.0*C1 + 1/(2.0*ZE)
B3 = -2.0*C3 + 1/(2.0*ZE)
A2 = -2.O*C2

C A2 =27.0 * B**2 *D /4.0
C C2 =A2 /2.0

K =6.2831853*F / CS
ABI = ABS(BI1)
Y1 (SQRT( SQRT( AB I * K**3)/A2)/Z)*(ABLI/BL1)
XlI = -2.0*B1I*B3/A2
X2 = SQRT(K/AB 1) / Z
D = (4.0*A2) / (B I * B I * 27.0)
WRITE(I0,20) D
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20 FORMAT(THE UNITESS OPENING RATE IS:', 1F1O.5)
D=D/Z
WRITE(10,30) D

30 FORMAT('THE OPENING RATE FOR THE PICTURE IS: ',F1O.5)
WRITE(10,1) BI, B3
WRITE(10,2) F, CS
WRITE(10,3) Z, ZS
WRlTE(10,4) A2, K
WRlTE(10,5) X2, Y1
WRITE(10,6) UA, UP
WRITE(1O,7) VA, VP
WRITE(10,8) Cl, C2

1 FORMAT('B1=', 1F1O.5, ' B3=', 1F1O.5)
2 FORMAT(QF I' G1.5,' CS=', 1G1O.5)
3 FORMAT('Z =, F1O.5,' ZS=', l1.5)
4 FORMAT(A2=', 1F1.5,' K =-, 1F1O.5)
5 FORMAT('X2=', 1FI.5,' Y1=', 11.5)
6 FORMAT('UA=', 1FI.5,' UP=', lF1O.5)
7 FORMAT('VA=', IF1.5,' VP=', 1-10.5)
8 FORMAT('C1=', 1F1O.5,' C2=', IF1O.5)

RETURN
END
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4-

4-

Figure 1) (a) A calculation of cos(s4/4 + w2s2/2 + w Is) and &t.{IFs for w2 =2.0 and

w, 0. (b) A calculation of sin(s4/4 + w,)s212 + w Is) and a',/as for w2 =2.0 and

WI 0.
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15-

20-

1~5-

10-

Figure 2) (a) A calculation of cos(s 4/4 + w2s 2/2 + wis) and ay/Ds for w2 = 10.0 and

l= 0. (b) A calculation of sin(s4/4 + w2s 2/2 + wjs) and dIf/as for W2 = 10.0 and

W1 = 0.
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40-

-40-

b0-

Figure 3) (a) A calculation of cos(s4/4 + w2s 2/2 + w Is) and a14/as for w2 20.0 and

=l0. (b) A calculation of sin(s4 /4 + w2s 2/2 + w1s) and d"/a for w2 =20.0 and

w1 0.
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7 5-

5

10-

75

Figure 4) (a) A calculation of cos(s414 + w2s2/2 + w Is) and djI/~s for w2 =5.0 and

=l 5.0. (b) A calculation of sin(s4/4 + w2s2/2 + was) and a/as for w2 = 5.0 and

wI 1 5.0.
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20-
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-30-

30-

20-

b 0.

-20-

-30-

Figure 5) (a) A calculation of CoS(S4 /4 + w2s 2/2 + w Is) and di/v)s for w2 = 10.0 and

=l 5.0. (b) A calculation of sin(s4/4 + w2s 212 + wis) and c'ih,/as for w2 = 10.0 and

w 5.0.
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= 5.0.
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5.2 THE ALGORITHM USED TO CALCULATE THE LOCATION OF

RAYS IN THE EXIT PLANE AND THE TRAVEL TIME SURFACE

The general method used in this algorithm was described in Appendix A of Chapter

3. The code follows.

REAL*8 V, U, B I, THIRD, A2, DET, UTILDE, WTILDE, B3, UC
REAL*8 Hi, H3
INTEGER ZERO, THREE, I
COMPLEX* 16 SQRT3
COMMON/DATA/U,V,A2,B 1
COMMON/DAT2/ SQRT3, P-IIRD

ZERO = 0
THREE =3

THIRD= 1ODO /3.0D0
SQRT3 =DCMPLX(0.0D0, DSQRT(3.ODO))

CCCC SURFACE PARAMETERS FOR Hi I= -0.00031l/CM CCCC
CCCC H2 = -0.00 117/CM/CM CCCC
CCCC Z =68 CM CCCC
CCCC ZS = 170 CM CCCC
CCCC TAKEN FROM TDS DATA OF 11 -0 1-90 CCCC

HI = -0.0003 1
H3 = -0.0194
Z =68
ZS = 170
BI = -2*H1 + 1/(2*Z) + 1/(ZS*2)
B3 = -2*H3 + 1/(2*Z) + 1/(2*ZS)
A2 = 0.00234D0
UC = -2.0D0*B3*B1/A2

CCCC CALCULATE TRAVEL TIMES ALONG CUTS THROUGH CCCC
CCCC HORIZONTAL CCCC
CCCC POSITIONS GIVEN BY U - UC = ... CCCC

DO 100I= 1, 7
U = -0.0397 + (I-1)W0.0397
UTLLDE =-U /A2

CCCC LIMITS REPRESENT VERTICAL LIMITS OF DATA 11-01-90 CCCC
DO 10 V = -0. 159D0, 0.OOODO, 0.00795D0

VTILDE = V * BlI / (2.ODO * A2**2)
DET = VTILDE**2 + UTILDE**3 / 27.ODO
CALL FINDTIME(VTILDE, UTILDE, DET,ZERO,I)

10 CONTINUE

DO 20 V = 0.00795D0, 0. 160D0, 0.00795D0
VTILDE = V * B 1 / (2.ODO * A2**2)
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DET = VTILDE**2 + UTILDE**3 / 27.ODO
CALL FLNDTIME(VTILDE, IJTILDE, DET,THREE,I)

20 COINTINUE

100 CONTINUE
END

SUBROUTINE FINDTLME(VTILDE, UTILDE, DET, MF,I)
REAL*8 VTILDE, UTILDE, DET, THIRD, AR, BR
REAL*8 U, X, Y, A2, BL, V, Yl, XI
INTEGER CMPL, ONE, TWO, THREE, MF, M, I
COMPLEX* 16 A, B, APB, AMB, SQRT3
COMMON/DATA/U,V,A2,B 1
COMMON/DAT2/ SQRT3, THIRD

ONE= 1
TWO =2

THREE = 3

IF (DET.LT.0.ODO) THEN
A = DCMPLX(-VTILDE, DSQRT(DABS(DET)))
IF (REAL(A).LT.0.ODO) THEN

A = -*((-A)**THIRD)
ELSE
A = A**THIRD
ENDIF
B = DCMPLX(-VTILDE, -DSQRT(DABS(DET)))
IF (REAL(B).LT.0.ODO) THEN

B = -1*(-B)**THIRD
ELSE

B = B**THIRD
END IF
CMPL = 1

ELSE
AR = -VTILDE + DSQRT(DET)
AR = SIGN( 1.OD,AR)*(SIGN( 1.OD,AR) *AR)*"THIRD
BR = WTILDE + DSQRT(DET)
BR = -1 *SIGN(1.ODO,BR)*(SIGN(1.ODO,BR)*BR)* *THIRD
A = DCMPLX(AR,0.ODO)
B = DCMPLX(BR,0.ODO)
CMPL= 0

ENDIF

APB= A +B

Y I = REAL(APB)
X1 = (U - A2*YI**2)/(2.ODO*B1)
M =ONE +MF
CALL TIME(M,X1,YI.U.VI,B 1)

IF (CMPL.EQ.1) THEN
AMB = (A - B)*SQRT3*0.5D0



Y = -REL(APB)2.ODO + REAL(AMB)28
X = (U-A2*Y**2)/(2.ODO*B I)
M = TWO + MEF
CALL TIME(M,X,Y,U,V,I,B 1)

Y = -REAL(APB)/2.ODO - REAL(AMB)
X = (U-A2*Y**2)/(2.0DO*B 1)
M = THREE + ME
CALL TIME(M,X,Y ,U,V,I,B 1)

ENDIF
RETURN
END

SUBROUTINE TIME(WHICH,X,Y,U.V,I,B 1)
REAL*8 C, X, Y, Z, ZS, A2, B I, PHI, ATIM4E, U, V
REAL*8 US, VS, B3, A4, A5, R, RS, Hl, H3
INTEGER WHICH, I

C = 0. 148D6
Z =68.ODO
ZS = 170.ODO
HI = -0.00031
H3 = -0.0194
B I = -2*H1I + 1/(2*Z) + 1I(ZS*2)
B3 = -2*H3 + 1/(2*Z) + 1/(2*ZS)
A2 = 0.00234D0
US = -15.ODO
VS = 0.ODO
UC = -2.ODO*B3*B1/A2
UT =U +UC -US/ZS
VT = V-VS/ZS
R = DSQRT(Z*Z*(1 + UT*~UT + VT* VT))
RS = DSQRT(ZS*ZS + US*US + VS*VS)
PHI = B1I*X**2 + A2*X*Y**2 + B3*Y**2 - X*(U + UC) - Y*V

CCCC THE TIME IS CALCULATED IN MICRO SECONDS CCCC
C ATIME = 1000000*(R + RS + PHD)/C

ATIME = 1000000*PHIIC
C ATIME = 1000000*(R + RS)/C

WRITE(16, 40) ATIME, V
100 FORMAT(3F15.5)

RETURN
END
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5.3 THE ALGORITHM USED TO CALCULATE THE HI1LBERT

TRANSFORM OF A DIGITIZED TIME RECORD

The outline of this program is given in Table II of Chapter 4. The code follows.

INTEGER N, I
PARAMETER (N= 1024)
REAL A(N),RSEQ(N),TWOPI
COMPLEX SEQ(N),COEF(N),X(N),IM
REAL RWKSP(6179)
COMMON/WOKKSP/RWKSP
CALL IWKIN(5 179)
TWOPI = 2.0*CONST(CPl')
IM = CMPLX(0.0,1.0)
DO 10 1 = 1,N

CCCC The algorithm can be used to calculate the Hilbert transform of a signal
CCCC numerically produced on the computer as well as a data signal input from an
CCCC external file

A(I) = SIN(I*TWOPII64)
C A(I) = 0.0
C IF ((I.GE.480).AND.(I.LE-544)) A(I) = SIN((I-480)*TWOPU/64)

IF ((I.GE. 0).AND.(I.LE.200)) A(I) = 0
IF ((I.GE.700).AN-0.(I.LE. 1024)) A(I) =0

X(I) -- CMPLX(A(I),0.0)
10 CONTINUE

CALL FFTCF(N,X,COEF)
DO 20 1= l,N12

COEF(I) = "M*COEF(I)
COEF(I+N/2) = .-1M*COEF(I+N/2)

20 CONTINUE
CALL FFTFCB(N,CUEF,SEQ)
DO 30 I=1,N

SEQ(I) = SEQ(I)/N
RSEQ(I) = REAL(SEQ(I))

30 CONTINUE
XVRITE(8, 100) (I,A(I),I=1 ,N)
WRITE(9, 100) (I,RSEQ(I),I= 1,N)

100 FORMAT(IX,17,7X,F15.3)
WRITE(10,101)
WRITE(10,102)
WRITE(10,103) (I,X(I),COEF(I),SEQ(1),I=1,N)

101 FORMAT(7x,
+'The transform of the single arrival touching the caustic')

102 FORMAT(4X,'INDEX',7X.'INPUT',8X,'FORWARD TRANSFORM',2X,
+'BACK WARD TRANSFORM')

103 FORMAT(17,4X,'(',F6.3,',',F6.3,')',
+4X ,'(',F6. 3,',' ,F6.3,:)',
+4X , '(',F6.3, ',', F6.3 .')')

104 FORMAT(IX,17,7X,F15.3,7X,F15.3)
END
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